The Cancer Informatics Core is comprised of informatics faculty and staff who are focused on providing informatics services and necessary computational infrastructure for the diverse informatics needs of Cancer Center members in the Robert H. Lurie Comprehensive Cancer Center. The Core works closely with RHLCCC governance committees to promulgate standards, provide advice and guidance, optimize systems and minimize redundancy through continued integration of data, databases, applications, software and computational infrastructure that is necessary to support cancer translational research. Since the last competitive renewal, the Core has established a scalable high performance cyber-infrastructure equipped with >200 TB of tiered storage and a virtualized data center to meet the data and computational needs of Cancer Center members. The Core also provides access and training for Cancer Center members on the 7000 core Northwestern Quest cluster for projects requiring high performance computing. During the past five years, the Core has met its primary goals of providing the necessary computational infrastructure for managing clinical trials with the Clinical Research Office, storage for microarray and next generation sequencing. The core has provided the necessary oversight, project management, and software development expertise to deliver data management and reporting applications for prostate cancer and breast cancer repositories. The core has also worked closely with the RHLCCC neuro-oncology investigators to deliver innovative patient-facing intake and assessment applications that are coupled to clinical data available through the Enterprise Data Warehouse with molecular data coming from biospecimens, including gene expression, copy number, and methylation data. We have also provided sophisticated gene expression analysis, pathway enrichment analysis, and methylation data analysis including visualization methods for more than 70 cancer center members and 160 projects during the past five years. In addition to providing these genomic analysis services to our cancer center members, we have released the tools developed for these projects as open source bioconductor packages [lumi, GeneAnswers, ChlPpeakAnno, MassSpecWavelet). The core has also developed, in conjunction with the Northwestern University Biomedical Informatics Center (part ofthe Northwestern CTSA) a number of web-based clinical research software modules that have been released as open source tools (Patient Study Calendar, Registar, eNOTIS, Surveyor). In addition, the core has developed and released tools for scientific network analysis (LatticeGrid) and competition management (NUCATS Assist). The Core will continue to support and extend these activities. We anticipate that during the next five year there will be additional member-driven demand in the area of next generation sequencing, high performance computing, and FISMA compliant computing.

Public Health Relevance

The overall goal of the Cancer Informatics Core facility is to provide RHLCCC investigators with genomic analysis tools, data management services, and cyber-infrastructure to answer cancer research questions. To accelerate cancer research in the RHLCCC, the Cancer Informatics Core works closely with cancer investigators and RHLCCC cores including the Clinical Research Office, the Biostatistics Core Facility, Cell Imaging, Pathology Core, Outcomes Measure and Survey Core, and the Flow Cytometry Core.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
United States
Zip Code
Caralt, M; Uzarski, J S; Iacob, S et al. (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15:64-75
Hung, Andy H; Holbrook, Robert J; Rotz, Matthew W et al. (2014) Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS Nano 8:10168-77
Gach, Johannes S; Achenbach, Chad J; Chromikova, Veronika et al. (2014) HIV-1 specific antibody titers and neutralization among chronically infected patients on long-term suppressive antiretroviral therapy (ART): a cross-sectional study. PLoS One 9:e85371
Zhao, Baobing; Keerthivasan, Ganesan; Mei, Yang et al. (2014) Targeted shRNA screening identified critical roles of pleckstrin-2 in erythropoiesis. Haematologica 99:1157-67
Keller, Jacob Pearson; Homma, Kazuaki; Duan, Chongwen et al. (2014) Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J Neurosci 34:1325-32
Daugherty, Rebecca L; Serebryannyy, Leonid; Yemelyanov, Alex et al. (2014) ?-Catenin is an inhibitor of transcription. Proc Natl Acad Sci U S A 111:5260-5
Jensen, Samuel A; Calvert, Andrea E; Volpert, Giora et al. (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci U S A 111:5682-7
Cull, Elizabeth H; Altman, Jessica K (2014) Contemporary treatment of APL. Curr Hematol Malig Rep 9:193-201
Anderson, Mark T; Dewenter, Lena; Maier, Berenike et al. (2014) Seminal plasma initiates a Neisseria gonorrhoeae transmission state. MBio 5:e01004-13
Gopal, Satish; Achenbach, Chad J; Yanik, Elizabeth L et al. (2014) Moving forward in HIV-associated cancer. J Clin Oncol 32:876-80

Showing the most recent 10 out of 316 publications