The Bioanalytical/Pharmacokinetics Shared Resource (BPSR) is a shared resource that provides Knight members with access to state-of-the art liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS). The BPSR provides expert consultation on the design of analytical methods and pharmacokinetic studies and assistance with the analysis of PK data.
The Specific Aims of the facility are: 1) to provide Knight members access to instrumentation that is maintained for small molecule analysis and includes LC-MS/MS and GC-MS instruments;2) to provide Knight members with a full service laboratory to develop analytical methods, prepare samples and provide data analysis for both clinical and basic science investigations;3) to provide Knight members with assistance in the design and interpretation of pharmacokinetic studies for both animal models and Phase 1 investigations.

Public Health Relevance

The study of the absorption, distribution, metabolism and elimination of established and experimental drugs is essential to the Knight Cancer Institute's program of personalized medicine. The BPSR enables investigators to ask quantitative questions about small molecules in all phases of translational research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA069533-16
Application #
8504961
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
16
Fiscal Year
2013
Total Cost
$48,627
Indirect Cost
$23,263
Name
Oregon Health and Science University
Department
Type
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Smith, Nicholas R; Swain, John R; Davies, Paige S et al. (2018) Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 6:79-96
Langer, E M; Kendsersky, N D; Daniel, C J et al. (2018) ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene 37:1005-1019
Sorace, Anna G; Partridge, Savannah C; Li, Xia et al. (2018) Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging (Bellingham) 5:011019
Medler, Terry R; Murugan, Dhaarini; Horton, Wesley et al. (2018) Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 34:561-578.e6
Kelley, Katherine A; Wieghard, Nicole; Chin, Yuki et al. (2018) MiR-486-5p Downregulation Marks an Early Event in Colorectal Carcinogenesis. Dis Colon Rectum 61:1290-1296
Davare, Monika A; Henderson, Jacob J; Agarwal, Anupriya et al. (2018) Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma. Clin Cancer Res 24:6471-6482
Kurtz, Stephen E; Eide, Christopher A; Kaempf, Andy et al. (2018) Dual inhibition of JAK1/2 kinases and BCL2: a promising therapeutic strategy for acute myeloid leukemia. Leukemia 32:2025-2028
Sehrawat, Archana; Gao, Lina; Wang, Yuliang et al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A 115:E4179-E4188
Watson, Spencer S; Dane, Mark; Chin, Koei et al. (2018) Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 6:329-342.e6
Li, Bingbing X; Chen, Jingjin; Chao, Bo et al. (2018) Anticancer Pyrroloquinazoline LBL1 Targets Nuclear Lamins. ACS Chem Biol 13:1380-1387

Showing the most recent 10 out of 277 publications