The Integrated Genomics Shared Resource brings together microarray services and advanced sequencing technology in an established core environment with demonstrated strengths in delivery of high quality data and comprehensive user support. As an integrated resource for genomic technologies, the Integrated Genomics Shared Resource is able to advise Knight members on selection of genomic technologies and applications that best suit their research aims and then effectively support those choices. The facility provides Knight members: 1) access to otherwise costly technology at a reasonable price;(2) in-house consultation for project development, experimental design, and analysis of results;3) rapid turnaround time for genomics services;4) highly-standardized and quality-controlled assays and data preparation;and 5) a stable repository of microarray and sequencing data. Most importantly, the IGL maintains a team of highly knowledgeable and experienced staff that is available to cancer researchers for project design consultation, grant development assistance, assay development collaboration, and data analysis and publication support.

Public Health Relevance

The Integrated Genomics Shared Resource brings together microarray services and advanced sequencing technology in an established core environment with demonstrated strengths in delivery of high quality data and comprehensive user support.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA069533-17
Application #
8712378
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Type
DUNS #
City
Portland
State
OR
Country
United States
Zip Code
97239
Krey, Jocelyn F; Scheffer, Deborah I; Choi, Dongseok et al. (2018) Mass spectrometry quantitation of proteins from small pools of developing auditory and vestibular cells. Sci Data 5:180128
Rozanov, Dmitri V; Rozanov, Nikita D; Chiotti, Kami E et al. (2018) MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection. J Proteomics 176:13-23
Winters-Stone, Kerri M; Wood, Lisa J; Stoyles, Sydnee et al. (2018) The Effects of Resistance Exercise on Biomarkers of Breast Cancer Prognosis: A Pooled Analysis of Three Randomized Trials. Cancer Epidemiol Biomarkers Prev 27:146-153
Pennock, Nathan D; Martinson, Holly A; Guo, Qiuchen et al. (2018) Ibuprofen supports macrophage differentiation, T cell recruitment, and tumor suppression in a model of postpartum breast cancer. J Immunother Cancer 6:98
Xu, Li; Gordon, Ryan; Farmer, Rebecca et al. (2018) Precision therapeutic targeting of human cancer cell motility. Nat Commun 9:2454
Chen, Emerson Y; Blanke, Charles D; Haller, Daniel G et al. (2018) A Phase II Study of Celecoxib With Irinotecan, 5-Fluorouracil, and Leucovorin in Patients With Previously Untreated Advanced or Metastatic Colorectal Cancer. Am J Clin Oncol 41:1193-1198
Lane, Ryan S; Femel, Julia; Breazeale, Alec P et al. (2018) IFN?-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med 215:3057-3074
Smith, Nicholas R; Swain, John R; Davies, Paige S et al. (2018) Monoclonal Antibodies Reveal Dynamic Plasticity Between Lgr5- and Bmi1-Expressing Intestinal Cell Populations. Cell Mol Gastroenterol Hepatol 6:79-96
Langer, E M; Kendsersky, N D; Daniel, C J et al. (2018) ZEB1-repressed microRNAs inhibit autocrine signaling that promotes vascular mimicry of breast cancer cells. Oncogene 37:1005-1019
Sorace, Anna G; Partridge, Savannah C; Li, Xia et al. (2018) Distinguishing benign and malignant breast tumors: preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging (Bellingham) 5:011019

Showing the most recent 10 out of 277 publications