The overall objective of the Microarray Core Facility is to provide a comprehensive service to investigators performing large scale genomic or gene expression profiling experiments. Core personnel provide advice on the design of microarray experiments and any follow-up to the initial experiment. Core personnel process RNA samples using standardized protocols for gene expression arrays and DNA samples with standardized protocols for single nucleotide polymorphism arrays. At each step of an actual experiment, quality control is performed to ensure that the final product is a valid dataset for extracting useful biological information. Core personnel manage the computerized data generated from microarray experiments and maintain the database of microarray data generated locally or obtained through collaborative research. The data are available for distribution for analysis purposes, in any standard format through local networks, a web-based portal, or a File Transfer Protocol (ftp) server. Core personnel assist in the analysis of many of the experiments performed by Cancer Center members and serve as the primary source of information related to the follow-up evaluation of the microarray results and identification of biological implications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA076292-13
Application #
8214134
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
13
Fiscal Year
2011
Total Cost
$100,784
Indirect Cost
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Tauro, Marilena; Shay, Gemma; Sansil, Samer S et al. (2017) Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol Cancer Ther 16:494-505
Davis, Stacy N; Christy, Shannon M; Chavarria, Enmanuel A et al. (2017) A randomized controlled trial of a multicomponent, targeted, low-literacy educational intervention compared with a nontargeted intervention to boost colorectal cancer screening with fecal immunochemical testing in community clinics. Cancer 123:1390-1400
Song, Jinming; Hussaini, Mohammad; Zhang, Hailing et al. (2017) Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis. Am J Clin Pathol 147:444-452
Strom, Tobin; Harrison, Louis B; Giuliano, Anna R et al. (2017) Tumour radiosensitivity is associated with immune activation in solid tumours. Eur J Cancer 84:304-314
Heit, Claire; Marshall, Stephanie; Singh, Surrendra et al. (2017) Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 103:48-56
Eksioglu, E A; Chen, X; Heider, K-H et al. (2017) Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia 31:2172-2180
Kamath, Vidya P; Torres-Roca, Javier F; Eschrich, Steven A (2017) Integrating Biological Covariates into Gene Expression-Based Predictors of Radiation Sensitivity. Int J Genomics 2017:6576840
Liu, Ying; Balagurunathan, Yoganand; Atwater, Thomas et al. (2017) Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules. Clin Cancer Res 23:1442-1449
Chen, Yi; Fisher, Kate J; Lloyd, Mark et al. (2017) Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 1647:19-45
Extermann, Martine; Leeuwenburgh, Christiaan; Samiian, Laila et al. (2017) Impact of chemotherapy on medium-term physical function and activity of older breast cancer survivors, and associated biomarkers. J Geriatr Oncol 8:69-75

Showing the most recent 10 out of 1137 publications