The Proteomics Core was established in 2003 to address the needs of Center members to examine protein expression, interaction, and post-translational modifications as part of the molecular basis of cancer. The characterization of proteins and analysis of patterns of protein expression and modification will play a critical role in diagnosis and treatment of disease. Gene expression profiling can only provide a partial answer to the molecular aspects of cancer, because proteins are the ultimate mediators of gene function. The Proteomics Core provides investigators with expertise, protocols, and instrumentation to support protein and peptide separations, robotic sampling and digestion, as well as protein and peptide mass analysis. Furthermore, via collaboration with Cancer Informatics, we support data systems, software, and bioinformatics tools for data analysis and archiving. The individual services are grouped into modules for the ease of the collaborator; platforms are provided for protein identification, post-translational modification analysis, and quantification. Since the last submission, the Proteomics Core has added several new personnel, including two staff scientists. Several instruments have been added to the Core, including a second LTQ linear ion trap mass spectrometer (Thermo), an LTQ-Orbitrap upgrade (Thermo), a Symphony peptide synthesizer (Protein Technologies), and a ProPrep 11 (Digilatj) robot for automated sample handling, including protein.digestion, clean up, and MALDI spotting. A variety of new services have also been introduced including standard procedures and charges for separations and the implementation of quantitative mass spectrometry methods. Most significantly, the Core has fully implemented the reaction monitoring techniques on the triple quadrupole mass spectrometer. The Core's educational focus has expanded with the creation of a Clinical Proteomics Training Program, which enables the Core to train underrepresented undergraduate students. The Core requests CCSG Support of $191,446, which is 30% of its operational budget. Over 93% of usage is by Moffitt members and peer-reviewed.

Public Health Relevance

Proteomics is a new and rapidly evolving field that combines aspects of protein chemistry, separation science, mass spectrometry (MS), and bioinformatics. A central resource for Moffitt Cancer Center investigators, it provides expertise in proteomic applications, access to a variety of separations and mass spectrometry instruments, a highly trained collaborative staff, and educational materials and programs.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA076292-14
Application #
8491546
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2012-06-22
Budget End
2013-01-31
Support Year
14
Fiscal Year
2012
Total Cost
$107,268
Indirect Cost
$45,564
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Davis, Stacy N; Christy, Shannon M; Chavarria, Enmanuel A et al. (2017) A randomized controlled trial of a multicomponent, targeted, low-literacy educational intervention compared with a nontargeted intervention to boost colorectal cancer screening with fecal immunochemical testing in community clinics. Cancer 123:1390-1400
Song, Jinming; Hussaini, Mohammad; Zhang, Hailing et al. (2017) Comparison of the Mutational Profiles of Primary Myelofibrosis, Polycythemia Vera, and Essential Thrombocytosis. Am J Clin Pathol 147:444-452
Tauro, Marilena; Shay, Gemma; Sansil, Samer S et al. (2017) Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol Cancer Ther 16:494-505
Heit, Claire; Marshall, Stephanie; Singh, Surrendra et al. (2017) Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 103:48-56
Eksioglu, E A; Chen, X; Heider, K-H et al. (2017) Novel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858. Leukemia 31:2172-2180
Strom, Tobin; Harrison, Louis B; Giuliano, Anna R et al. (2017) Tumour radiosensitivity is associated with immune activation in solid tumours. Eur J Cancer 84:304-314
Liu, Ying; Balagurunathan, Yoganand; Atwater, Thomas et al. (2017) Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules. Clin Cancer Res 23:1442-1449
Chen, Yi; Fisher, Kate J; Lloyd, Mark et al. (2017) Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins. Methods Mol Biol 1647:19-45
Kamath, Vidya P; Torres-Roca, Javier F; Eschrich, Steven A (2017) Integrating Biological Covariates into Gene Expression-Based Predictors of Radiation Sensitivity. Int J Genomics 2017:6576840
Ahmed, Kamran A; Berglund, Anders E; Welsh, Eric A et al. (2017) The radiosensitivity of brain metastases based upon primary histology utilizing a multigene index of tumor radiosensitivity. Neuro Oncol 19:1145-1146

Showing the most recent 10 out of 1137 publications