The Molecular Genomics Core Facility provides a centralized resource for the molecular analysis of the genome and transcriptome of cells and tissues. Analysis can occur at the level of a single nucleotide, a single molecule, and a single sample or involve multiple nucleotides, multiple molecules, and multiple samples. The laboratory offers single molecule sequencing, PCR-based analysis of genes and transcripts, and microarray based analysis of transcriptomes and genomes. In this era of high content analysis the goal is to economically measure the highest combination of nucleotides, molecules, and samples. As a centralized facility for all levels of assessment the laboratory provides the expertise required to determine the best technology to use for a research objective. The laboratory also provides expertise in the isolation, preservation, and handling of nucleic acids and training in the use of basic bioinformatics software needed to assess experimental data, access web resources, or perform follow-up investigations. Molecular Genomics Core represents the integration of complementary platforms through a single access point. The core merges the Microarray Core and the Molecular Biology Core as submitted at the last renewal. New equipment and services since the last renewal includes: an ABI 7900 Real Time PCR machine, a Agilent Surescan High-resolution DNA microarray scanner, an Xceed Molecular Ziplex microarray system, the lllumina HiScanSQ system, microarray-based for ChlP-on-ChIP experiements, expanded genotyping and mutational analysis options, and implementation of a LIMS system. The Core requests CCSG Support of $264,488, which is 30% of its operational budget. Over 92% of usage is by Moffitt members and peer-reviewed.

Public Health Relevance

The core provides an efficient and essential resource for Moffitt Members to analyze changes in gene/genomes and epigenetie factors. The Molecular Genomics Core has contributed greatly to the scientific investigations occurring at the Cancer Center and contributed to science on a national level.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA076292-15
Application #
8495975
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
15
Fiscal Year
2013
Total Cost
$95,639
Indirect Cost
$38,880
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Permuth, Jennifer B; Pirie, Ailith; Ann Chen, Y et al. (2016) Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Hum Mol Genet 25:3600-3612
Weber, Jeffrey; Gibney, Geoffrey; Kudchadkar, Ragini et al. (2016) Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunol Res 4:345-53
Reed, Damon R; Mascarenhas, Leo; Manning, Kathleen et al. (2016) Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies. Cancer Med 5:294-303
Turner, Joel G; Dawson, Jana L; Grant, Steven et al. (2016) Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol 9:73
Haake, Scott M; Li, Jiannong; Bai, Yun et al. (2016) Tyrosine Kinase Signaling in Clear Cell and Papillary Renal Cell Carcinoma Revealed by Mass Spectrometry-Based Phosphotyrosine Proteomics. Clin Cancer Res :
Schabath, Matthew B; Massion, Pierre P; Thompson, Zachary J et al. (2016) Differences in Patient Outcomes of Prevalence, Interval, and Screen-Detected Lung Cancers in the CT Arm of the National Lung Screening Trial. PLoS One 11:e0159880
Kim, Jae-Young; Welsh, Eric A; Fang, Bin et al. (2016) Phosphoproteomics Reveals MAPK Inhibitors Enhance MET- and EGFR-Driven AKT Signaling in KRAS-Mutant Lung Cancer. Mol Cancer Res 14:1019-1029
Extermann, Martine; Leeuwenburgh, Christiaan; Samiian, Laila et al. (2016) Impact of chemotherapy on medium-term physical function and activity of older breast cancer survivors, and associated biomarkers. J Geriatr Oncol :
Jiang, Kun; Neill, Kevin; Cowden, Daniel et al. (2016) Expression of CAS/CSE1L, the Cellular Apoptosis Susceptibility Protein, Correlates With Neoplastic Progression in Barrett's Esophagus. Appl Immunohistochem Mol Morphol :
Sung, Hyeran; Kanchi, Krishna L; Wang, Xue et al. (2016) Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 7:23885-96

Showing the most recent 10 out of 974 publications