The Molecular Genomics Core Facility provides a centralized resource for the molecular analysis of the genome and transcriptome of cells and tissues. Analysis can occur at the level of a single nucleotide, a single molecule, and a single sample or involve multiple nucleotides, multiple molecules, and multiple samples. The laboratory offers single molecule sequencing, PCR-based analysis of genes and transcripts, and microarray based analysis of transcriptomes and genomes. In this era of high content analysis the goal is to economically measure the highest combination of nucleotides, molecules, and samples. As a centralized facility for all levels of assessment the laboratory provides the expertise required to determine the best technology to use for a research objective. The laboratory also provides expertise in the isolation, preservation, and handling of nucleic acids and training in the use of basic bioinformatics software needed to assess experimental data, access web resources, or perform follow-up investigations. Molecular Genomics Core represents the integration of complementary platforms through a single access point. The core merges the Microarray Core and the Molecular Biology Core as submitted at the last renewal. New equipment and services since the last renewal includes: an ABI 7900 Real Time PCR machine, a Agilent Surescan High-resolution DNA microarray scanner, an Xceed Molecular Ziplex microarray system, the lllumina HiScanSQ system, microarray-based for ChlP-on-ChIP experiements, expanded genotyping and mutational analysis options, and implementation of a LIMS system. The Core requests CCSG Support of $264,488, which is 30% of its operational budget. Over 92% of usage is by Moffitt members and peer-reviewed.

Public Health Relevance

The core provides an efficient and essential resource for Moffitt Members to analyze changes in gene/genomes and epigenetie factors. The Molecular Genomics Core has contributed greatly to the scientific investigations occurring at the Cancer Center and contributed to science on a national level.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA076292-16
Application #
8613447
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
16
Fiscal Year
2014
Total Cost
$77,188
Indirect Cost
$31,379
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Davis, Stacy N; Govindaraju, Swapamthi; Jackson, Brittany et al. (2018) Recruitment Techniques and Strategies in a Community-Based Colorectal Cancer Screening Study of Men and Women of African Ancestry. Nurs Res 67:212-221
Martínez, Úrsula; Brandon, Thomas H; Sutton, Steven K et al. (2018) Associations between the smoking-relatedness of a cancer type, cessation attitudes and beliefs, and future abstinence among recent quitters. Psychooncology 27:2104-2110
Perales-Puchalt, Alfredo; Perez-Sanz, Jairo; Payne, Kyle K et al. (2018) Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol 103:799-805
Nelson, Ashley M; Jim, Heather S L; Small, Brent J et al. (2018) Sleep disruption among cancer patients following autologous hematopoietic cell transplantation. Bone Marrow Transplant 53:307-314
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Kasting, Monica L; Giuliano, Anna R; Reich, Richard R et al. (2018) Hepatitis C Virus Screening Trends: Serial Cross-Sectional Analysis of the National Health Interview Survey Population, 2013-2015. Cancer Epidemiol Biomarkers Prev 27:503-513
Denson, Aaron; Burke, Nancy; Wapinsky, Georgine et al. (2018) Clinical Outcomes of Patients With Gastrointestinal Malignancies Participating in Phase I Clinical Trials. Am J Clin Oncol 41:133-139
Betts, Brian C; Bastian, David; Iamsawat, Supinya et al. (2018) Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proc Natl Acad Sci U S A 115:1582-1587
Pidala, Joseph; Beato, Francisca; Kim, Jongphil et al. (2018) In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica 103:531-539
Hampras, S S; Tommasino, M; Zhao, Y et al. (2018) Cross-sectional associations between cutaneous viral infections and regulatory T lymphocytes in circulation. Br J Dermatol :

Showing the most recent 10 out of 1254 publications