The overall goal of the Moffitt Cancer Center (MCC) Immunology (IMM) Program is to define the mechanisms by which tumors evade rejection by the immune system and to develop strategies to thwart them. Fundamental discoveries by IMM members have led to novel immunotherapy trials that directly benefit cancer patients. Key to the Program's success is the close integration of IMM clinical, translational, and basic scientists that facilitates rapid progression of novel immunotherapies from the bench to bedside. The goals of Specific Aim 1 are to advance and translate T-cell therapies for solid tumors and hematologic malignancies, by bringing laboratory and pre-clinical studies of the IMM Program to the patient bedside in the form of novel investigator- initiated clinical trials. Specific areas of focus include: (1) adoptive T-cell immunotherapy using ex vivo expanded tumor-infiltrating lymphocytes and genetically modified immune effector cells; (2) mechanistic strategies to improve adoptive cell therapy; (3) restoration of tumor-specific responses by immune checkpoint inhibitors, histone deacetylase inhibitors (HDACi), and vaccination; and (4) defining gene expression signatures of immune responders. MCC infrastructure that supports IMM members includes: (i) the Immunotherapy Working Group that conceives interventional trials; (ii) a Good Manufacturing Practice- compliant Cellular Therapy Core Facility; and (iii) the interdisciplinary Immune and Cellular Therapy clinical service to deliver therapy to patients. The goals of Specific Aim 2 are to define molecular and cellular mechanisms that can exploit innate and adaptive immunity against cancer. Here, IMM members seek to discover and develop molecular approaches to harness the immune system. Collaborative studies include those assessing T-cell recruitment and suppression, natural killer cell control, myeloid-derived suppressor cell expansion, and selective HDACi immune modulation. These initiatives have generated several innovative approaches that control these processes, including therapeutic translation into clinical trials. The goals of Specific Aim 3 are to prevent graft-versus-host disease (GVHD) while maintaining the potency of graft-versus- leukemia and other blood cancers following hematopoietic cell transplantation (HCT). The IMM Program has made significant impact in this arena, including the discovery that Th17 cells have a central role in the severity of GVHD and in the response to therapy. The approaches to prevent GVHD and maintain anti-tumor response include: (1) adoptive transfer of donor Tregs specific against host minor-histocompatibility antigens; (2) targeting the common IL-12/IL-23 p40 receptor chain; (3) targeting JAK2 or STAT3; and (4) defining gene expression signatures associated with operational tolerance following allogeneic HCT. The Program is composed of 25 members from 10 different academic departments. During the reporting period, 534 cancer- related articles were published, with 167 (31)% intra-programmatic and 207 (39%) inter-programmatic. Grant funding for the Program is $18.8 million, of which $7.0 million is peer-reviewed , including 43% from NCI.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA076292-20
Application #
9419811
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2018-02-01
Budget End
2019-01-31
Support Year
20
Fiscal Year
2018
Total Cost
Indirect Cost
Name
H. Lee Moffitt Cancer Center & Research Institute
Department
Type
DUNS #
139301956
City
Tampa
State
FL
Country
United States
Zip Code
33612
Kim, Youngchul; Pierce, Christine M; Robinson, Lary A (2018) Impact of viral presence in tumor on gene expression in non-small cell lung cancer. BMC Cancer 18:843
Persi, Erez; Duran-Frigola, Miquel; Damaghi, Mehdi et al. (2018) Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun 9:2997
Rosenberger, Albert; Hung, Rayjean J; Christiani, David C et al. (2018) Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. Int Arch Occup Environ Health 91:937-950
Chen, Yan; Zhu, Jin-Yi; Hong, Kwon Ho et al. (2018) Structural Basis of ALDH1A2 Inhibition by Irreversible and Reversible Small Molecule Inhibitors. ACS Chem Biol 13:582-590
Kahen, Elliot John; Brohl, Andrew; Yu, Diana et al. (2018) Neurofibromin level directs RAS pathway signaling and mediates sensitivity to targeted agents in malignant peripheral nerve sheath tumors. Oncotarget 9:22571-22585
Hoffman, Melissa A; Fang, Bin; Haura, Eric B et al. (2018) Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer. J Proteome Res 17:63-75
Puri, Sonam; Hyland, Kelly A; Weiss, Kristine Crowe et al. (2018) Prediction of chemotherapy-induced nausea and vomiting from patient-reported and genetic risk factors. Support Care Cancer 26:2911-2918
Gonzalez, Brian D; Small, Brent J; Cases, Mallory G et al. (2018) Sleep disturbance in men receiving androgen deprivation therapy for prostate cancer: The role of hot flashes and nocturia. Cancer 124:499-506
Eroglu, Zeynep; Zaretsky, Jesse M; Hu-Lieskovan, Siwen et al. (2018) High response rate to PD-1 blockade in desmoplastic melanomas. Nature 553:347-350
Lu, Yingchang; Beeghly-Fadiel, Alicia; Wu, Lang et al. (2018) A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Res 78:5419-5430

Showing the most recent 10 out of 1254 publications