The Neurologic Oncology Program (Program) is a collection of 17 basic scientists, neuro-oncologists, and neurosurgeons who take a team approach to the improvement of brain cancer therapy. The Program, which has been in existence since the inception of the Helen Diller Family Comprehensive Cancer Center (Center), has as its three programmatic themes: to better understand the underlying biology of brain tumors, to use that information to better predict disease occurrence and outcome, and most importantly, to improve brain tumor therapy. The 17 members of the Neurologic Oncology Program are drawn from seven different UCSF departments, and represent a truly interdisciplinary team. The NCI and other peer-reviewed support for this group of investigators for the 2010-2011 academic year totaled over $23,377,244, including funds to support a P01, T32, and SPORE grants, all specifically designed to pursue and encourage translational brain tumor research. This group of investigators is both highly productive and interactive, as witnessed by the 437 publications of the group in the previous funding period;the multiple publications of the group in leading journals such as Nature, Science, Cancer Cell, Nature Medicine, Nature Genetics, and Neuron;and the high percentage of intra-programmatic (32%) and inter-programmatic (31%) publications. The clinical portion of the Program has been successful developing early phase investigator initiated therapeutic studies and bringing these to the clinic for testing, with particular emphasis on SPORE related clinical trials. The broad range of publications covering population science, cell signaling, genomics, imaging, and clinical science, as well as the high percentage of intra- and inter-programmatic publications, are the result of a strategically Integrated, highly interactive, diverse, and productive Program that continues to make significant progress in reaching its stated goals.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA082103-15
Application #
8567858
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
15
Fiscal Year
2013
Total Cost
$96,543
Indirect Cost
$90,775
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
John, Constance M; Phillips, Nancy J; Din, Richard et al. (2016) Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. J Biol Chem 291:3224-38
Shatsky, Maxim; Dong, Ming; Liu, Haichuan et al. (2016) Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Mol Cell Proteomics 15:2186-202
Nordström, Tobias; Van Blarigan, Erin L; Ngo, Vy et al. (2016) Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer. Prostate 76:339-48
Bulut-Karslioglu, Aydan; Biechele, Steffen; Jin, Hu et al. (2016) Inhibition of mTOR induces a paused pluripotent state. Nature 540:119-123
Akutagawa, J; Huang, T Q; Epstein, I et al. (2016) Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30:1335-43
Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping et al. (2016) p75 Neurotrophin Receptor Regulates Energy Balance in Obesity. Cell Rep 14:255-68
Ko, Andrew H; Bekaii-Saab, Tanios; Van Ziffle, Jessica et al. (2016) A Multicenter, Open-Label Phase II Clinical Trial of Combined MEK plus EGFR Inhibition for Chemotherapy-Refractory Advanced Pancreatic Adenocarcinoma. Clin Cancer Res 22:61-8
Nosbaum, Audrey; Prevel, Nicolas; Truong, Hong-An et al. (2016) Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing. J Immunol 196:2010-4
Phan, An T; Fernandez, Samantha G; Somberg, Jessica J et al. (2016) Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels. Biochem Biophys Res Commun 474:71-5
Chang, Matthew T; Asthana, Saurabh; Gao, Sizhi Paul et al. (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34:155-63

Showing the most recent 10 out of 135 publications