Established in 2004 in response to a growing need for pharmacokinetic (PK) analysis and modelling, the Clinical Pharmacology Analytical Core (CPAC) helps investigators by providing detailed information on drug interactions, quantification of drugs and metabolites, and protein binding of small molecules. CPAC services include preliminary determination of drug metabolism and metabolite identification for future use. These capabilities have been enhanced since acquiring the API 5500 Q-Trap instrument (described below). Once validated in the shared resource, chargebacks are calculated by the IUSCC administration. The process of rational drug design is built upon a strong foundation of biology, chemistry, in vivo pharmacology, and PK. Relevant PK and metabolism studies should be conducted in small animal models or in vitro systems before first drug administration in humans. This allows for the iterative process of implementing structural changes in the drug molecule to optimize the activity of the drug and its pharmacological and PK properties prior to moving to the more regulated and expensive clinical phase of drug development. PK plays an important role in the determination of drug action. The drug discovery process should provide a delicate balance between the chemistry, pharmacology, and PK of the drug. To coordinate these efforts, CPAC is now interacting closely with In Vivo Therapeutics (IVTC), Chemical Genomics, Center for Computational Biology and Bioinformatics, and other IUSCC shared resources. Over the past few years, CPAC and IVTC have worked together to generate data that help Pls better evaluate molecules developed within the IUSCC that show promise as novel cancer drugs. IVTC performs the live phase study {in vivo) and collects samples for CPAC to perform the kinetics. Both core leaders are directly involved in study design prior to project initiation. PK and metabolism data provide important information to guide drug design and treatment in pre-clinical drug discovery (bench) as well as in clinical drug development and treatment (bedside) with efforts focused on evaluation of toxicity and efficacy of new drug candidates. CPAC's state-of-the-art technology and expertise supports research and development of safe and more efficacious drug treatment for IUSCC investigators

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA082709-15
Application #
8781096
Study Section
Subcommittee G - Education (NCI)
Project Start
1999-09-22
Project End
2019-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
15
Fiscal Year
2014
Total Cost
$62,520
Indirect Cost
$25,566
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R et al. (2016) An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer. Cell Rep 17:1289-1301
Nudelman, Kelly N H; McDonald, Brenna C; Wang, Yang et al. (2016) Cerebral Perfusion and Gray Matter Changes Associated With Chemotherapy-Induced Peripheral Neuropathy. J Clin Oncol 34:677-83
Hoggatt, Jonathan; Hoggatt, Amber F; Tate, Tiffany A et al. (2016) Bleeding the laboratory mouse: Not all methods are equal. Exp Hematol 44:132-137.e1
Haley, James; Tomar, Sunil; Pulliam, Nicholas et al. (2016) Functional characterization of a panel of high-grade serous ovarian cancer cell lines as representative experimental models of the disease. Oncotarget 7:32810-20
Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A et al. (2016) A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas. Br J Cancer 114:477-84
Li, Wei; Liu, Liangyi; Gomez, Aurelie et al. (2016) Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease. JCI Insight 1:
Champion, Victoria L; Rawl, Susan M; Bourff, Sara A et al. (2016) Randomized trial of DVD, telephone, and usual care for increasing mammography adherence. J Health Psychol 21:916-26
Meijome, Tomas E; Baughman, Jenna T; Hooker, R Adam et al. (2016) C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis. J Cell Biochem 117:959-69
Richine, B M; Virts, E L; Bowling, J D et al. (2016) Syk kinase and Shp2 phosphatase inhibition cooperate to reduce FLT3-ITD-induced STAT5 activation and proliferation of acute myeloid leukemia. Leukemia 30:2094-2097
Masters, Andrea R; Gufford, Brandon T; Lu, Jessica Bo Li et al. (2016) Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers. J Pharmacol Exp Ther 358:230-8

Showing the most recent 10 out of 220 publications