The Gene Transfer Vector Core is integrated into multiple cancer projects directed at the study of the disease process, therapy and the development of vaccines. Vector Core staff are active participants in the development of gene transfer technologies in the cancer field. The interaction with multiple investigators from various disciplines allows for cross-fertilization of ideas, technical advancements, and innovations in vector designs. The Vector Core's overall objective is to support investigators in the use of gene transfer technologies, including consultation with the PI and staff, development of novel vectors, collaborative testing of vectors generated for function and purity, and finally routine preparation including quality control. Vector Core staff and investigators are in close contact through all phases of vector design and generation, and serves as both a research and development facility for gene transfer studies, and a service facility for routine vector preparations. As a part of the service the Vector Core will provide purified and concentrated preparations of recombinant adenovirus, adeno-associated virus (AAV), vaccinia, baculovirus and retrovirus (including lentivirus). This facility provides access to standard cell lines, expression plasmids, and stock of recombinant reporter viruses. The main responsibilities of the Core will be: Prepare recombinant vectors;Quality control;Vector dissemination;Maintain a database of vector stocks available for use;Catalogue plasmid database of expression vectors;develop new expression vectors as needed;Develop novel methods for virus production;Assist in the design and development of novel vectors. This facility serves the needs of numerous outside investigators interested in both basic and applied research with gene transfer vectors, and is important for several reasons. First, by keeping abreast of many different gene transfer vectors, approaches, and applications, the scientific expertise of the Vector Core staff is strengthened. Second, serving a broad scope of users improves and fosters inter-collegiate communication with focused efforts at developing improved vectors and delivery methods. Finally, a continuum of new ideas from both outside and within the university, and through our consultants insures that the Holden Comprehensive Cancer Center community has access to, or is aware of, the 'state of the art'.

Public Health Relevance

The ability to manipulate genes plays a central role in research designed to understand genetic factors that impact on carcinogenesis and behavior of malignant cells. The Gene Transfer Vector Core provides this vital service to HCCC members.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Iowa City
United States
Zip Code
Sabree, Shakoora; Berg, Daniel; Sato, Mariko (2018) Treatment of a pediatric patient with MET-amplified signet ring cell adenocarcinoma of the stomach with crizotinib. Pediatr Blood Cancer 65:e26984
Bharti, Sanjay Kumar; Sommers, Joshua A; Awate, Sanket et al. (2018) A minimal threshold of FANCJ helicase activity is required for its response to replication stress or double-strand break repair. Nucleic Acids Res 46:6238-6256
Reiner, Anne S; Sisti, Julia; John, Esther M et al. (2018) Breast Cancer Family History and Contralateral Breast Cancer Risk in Young Women: An Update From the Women's Environmental Cancer and Radiation Epidemiology Study. J Clin Oncol 36:1513-1520
Liu, Q; Kulak, M V; Borcherding, N et al. (2018) A novel HER2 gene body enhancer contributes to HER2 expression. Oncogene 37:687-694
Arthur, Rhonda; Wassertheil-Smoller, Sylvia; Manson, JoAnn E et al. (2018) The Combined Association of Modifiable Risk Factors with Breast Cancer Risk in the Women's Health Initiative. Cancer Prev Res (Phila) 11:317-326
Press, Robert H; Shu, Hui-Kuo G; Shim, Hyunsuk et al. (2018) The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective. Int J Radiat Oncol Biol Phys 102:1219-1235
Viala, Marie; Chiba, Akiko; Thezenas, Simon et al. (2018) Impact of vitamin D on pathological complete response and survival following neoadjuvant chemotherapy for breast cancer: a retrospective study. BMC Cancer 18:770
Madsen, Mark T; Menda, Yusuf; O'Dorisio, Thomas M et al. (2018) Technical Note: Single time point dose estimate for exponential clearance. Med Phys 45:2318-2324
Luchtel, Rebecca A; Dasari, Surendra; Oishi, Naoki et al. (2018) Molecular profiling reveals immunogenic cues in anaplastic large cell lymphomas with DUSP22 rearrangements. Blood 132:1386-1398
Pryma, Daniel A; Chin, Bennett B; Noto, Richard B et al. (2018) Efficacy and Safety of High-Specific-Activity I-131 MIBG Therapy in Patients with Advanced Pheochromocytoma or Paraganglioma. J Nucl Med :

Showing the most recent 10 out of 1080 publications