Loss or deregulation of proteins involved in such diverse processes as cellular proliferation, cell cycle and Checkpoint control, DNA repair and cell death is a consistent feature of cancer cells. Cancer cells arise through a process of cellular evolution due to the accumulation of genetic changes. As cancers arise and progress, there is a selection for those genetic changes that give the cancer cell a proliferative advantage over normal eells. Because many cancers are not easily detected at early stages of development, nor readily curable using existing strategies, there is a need to identify new molecules that can be used both as diagnostic probes and as therapeutic targets. The Cellular Proliferation Research Program is organized around the theme that elucidating the web of connections between signal transduction pathways, cell cycle regulatory pathways and cell death pathways will help both to define origins of human cancer and to identify targets for the design of novel therapies and diagnostic tools. Research activities of members of this program focus on fundamental biological processes regulating cellular proliferation, including signal transduction, cell cycle and checkpoint control, telomere biology and apoptosis. These laboratories employ a diverse array of experimental approaches and model organisms including budding yeast, Drosophila melanogaster, Caenorhabditis elegans, Xenopus and mammalian systems. Investigators in the program have a strong record of collaboration and interaction with other Siteman Cancer Center members. Major goals of the program include: promoting collaboration and translation of new findings regarding basic biological processes into opportunities for understanding and treating cancer and to enhance the training environment at Washington University School of Medicine in the area of cancer through teaching, training and faculty recruitment. The Cellular Proliferation Research Program includes 29 members representing nine academic departments and one school. The Program is supported by $15,992,269 in funding, of which $2,918,008 is NCI funding and $11,690,123 is other peer reviewed funding. In the last grant period, members of the Cellular Proliferation Program published 433 manuscripts, of which 24.94% represented inter-programmatic, 4.15% represented intra-programmatic collaborations, and 2% ofthe inter-programmatic are also intraprogrammatic.

Public Health Relevance

Proteins that regulate the ability of cells to grow, divide and die are frequently missing or deregulated in cancer cells. Understanding how these proteins are regulated and what, in turn, they regulate is fundamental to understanding, diagnosing and treating cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Eberth, Jan M; Josey, Michele J; Mobley, Lee R et al. (2017) Who Performs Colonoscopy? Workforce Trends Over Space and Time. J Rural Health :
Kuroki, Lindsay M; Frolova, Antonina I; Wu, Ningying et al. (2017) Yield of Cytology Surveillance After High-Grade Vulvar Intraepithelial Neoplasia or Cancer. J Low Genit Tract Dis 21:193-197
Spencer, David H; Russler-Germain, David A; Ketkar, Shamika et al. (2017) CpG Island Hypermethylation Mediated by DNMT3A Is a Consequence of AML Progression. Cell 168:801-816.e13
Cusworth, Brian M; Krasnick, Bradley A; Nywening, Timothy M et al. (2017) Whipple-specific complications result in prolonged length of stay not accounted for in ACS-NSQIP Surgical Risk Calculator. HPB (Oxford) 19:147-153
Wang, Xuya; Mooradian, Arshag D; Erdmann-Gilmore, Petra et al. (2017) Breast tumors educate the proteome of stromal tissue in an individualized but coordinated manner. Sci Signal 10:
Knoop, Kathryn A; Gustafsson, Jenny K; McDonald, Keely G et al. (2017) Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol 2:
Tang, Rui; Habimana-Griffin, LeMoyne M; Lane, Daniel D et al. (2017) Nanophotosensitive drugs for light-based cancer therapy: what does the future hold? Nanomedicine (Lond) 12:1101-1105
Song, Hao; Ruan, Dan; Liu, Wenyang et al. (2017) Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys. Med Phys 44:962-973
Bandyopadhyay, Shovik; Li, Junjie; Traer, Elie et al. (2017) Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One 12:e0179558
Lim, Kian-Huat; Langley, Emma; Gao, Feng et al. (2017) A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma. Oncotarget 8:24250-24261

Showing the most recent 10 out of 1109 publications