Loss or deregulation of proteins involved in such diverse processes as cellular proliferation, cell cycle and Checkpoint control, DNA repair and cell death is a consistent feature of cancer cells. Cancer cells arise through a process of cellular evolution due to the accumulation of genetic changes. As cancers arise and progress, there is a selection for those genetic changes that give the cancer cell a proliferative advantage over normal eells. Because many cancers are not easily detected at early stages of development, nor readily curable using existing strategies, there is a need to identify new molecules that can be used both as diagnostic probes and as therapeutic targets. The Cellular Proliferation Research Program is organized around the theme that elucidating the web of connections between signal transduction pathways, cell cycle regulatory pathways and cell death pathways will help both to define origins of human cancer and to identify targets for the design of novel therapies and diagnostic tools. Research activities of members of this program focus on fundamental biological processes regulating cellular proliferation, including signal transduction, cell cycle and checkpoint control, telomere biology and apoptosis. These laboratories employ a diverse array of experimental approaches and model organisms including budding yeast, Drosophila melanogaster, Caenorhabditis elegans, Xenopus and mammalian systems. Investigators in the program have a strong record of collaboration and interaction with other Siteman Cancer Center members. Major goals of the program include: promoting collaboration and translation of new findings regarding basic biological processes into opportunities for understanding and treating cancer and to enhance the training environment at Washington University School of Medicine in the area of cancer through teaching, training and faculty recruitment. The Cellular Proliferation Research Program includes 29 members representing nine academic departments and one school. The Program is supported by $15,992,269 in funding, of which $2,918,008 is NCI funding and $11,690,123 is other peer reviewed funding. In the last grant period, members of the Cellular Proliferation Program published 433 manuscripts, of which 24.94% represented inter-programmatic, 4.15% represented intra-programmatic collaborations, and 2% ofthe inter-programmatic are also intraprogrammatic.

Public Health Relevance

Proteins that regulate the ability of cells to grow, divide and die are frequently missing or deregulated in cancer cells. Understanding how these proteins are regulated and what, in turn, they regulate is fundamental to understanding, diagnosing and treating cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-12
Application #
8520204
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
12
Fiscal Year
2013
Total Cost
$60,202
Indirect Cost
$53,163
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Chen, Li-Shiun; Horton, Amy; Bierut, Laura (2018) Pathways to precision medicine in smoking cessation treatments. Neurosci Lett 669:83-92
Celik, Hamza; Koh, Won Kyun; Kramer, Ashley C et al. (2018) JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Cancer Cell 34:741-756.e8
Olfson, Emily; Bloom, Joseph; Bertelsen, Sarah et al. (2018) CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol 23:437-447
Betleja, Ewelina; Nanjundappa, Rashmi; Cheng, Tao et al. (2018) A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. Elife 7:
Hirbe, Angela C; Jennings, Jack; Saad, Nael et al. (2018) A Phase II Study of Tumor Ablation in Patients with Metastatic Sarcoma Stable on Chemotherapy. Oncologist 23:760-e76
Jenkins, Wiley D; Gilbert, David; Chen, Li-Shiun et al. (2018) Finding paths with the greatest chance of success: enabling and focusing lung cancer screening and cessation in resource-constrained areas. Transl Lung Cancer Res 7:S261-S264
Kabir, Ashraf Ul; Lee, Tae-Jin; Pan, Hua et al. (2018) Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3:
Smith, Lee; Ae Lee, Jung; Mun, Junbae et al. (2018) Levels and patterns of self-reported and objectively-measured free-living physical activity among prostate cancer survivors: A prospective cohort study. Cancer :
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis Model Mech 11:
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858

Showing the most recent 10 out of 1244 publications