Loss or deregulation of proteins involved in such diverse processes as cellular proliferation, cell cycle and Checkpoint control, DNA repair and cell death is a consistent feature of cancer cells. Cancer cells arise through a process of cellular evolution due to the accumulation of genetic changes. As cancers arise and progress, there is a selection for those genetic changes that give the cancer cell a proliferative advantage over normal eells. Because many cancers are not easily detected at early stages of development, nor readily curable using existing strategies, there is a need to identify new molecules that can be used both as diagnostic probes and as therapeutic targets. The Cellular Proliferation Research Program is organized around the theme that elucidating the web of connections between signal transduction pathways, cell cycle regulatory pathways and cell death pathways will help both to define origins of human cancer and to identify targets for the design of novel therapies and diagnostic tools. Research activities of members of this program focus on fundamental biological processes regulating cellular proliferation, including signal transduction, cell cycle and checkpoint control, telomere biology and apoptosis. These laboratories employ a diverse array of experimental approaches and model organisms including budding yeast, Drosophila melanogaster, Caenorhabditis elegans, Xenopus and mammalian systems. Investigators in the program have a strong record of collaboration and interaction with other Siteman Cancer Center members. Major goals of the program include: promoting collaboration and translation of new findings regarding basic biological processes into opportunities for understanding and treating cancer and to enhance the training environment at Washington University School of Medicine in the area of cancer through teaching, training and faculty recruitment. The Cellular Proliferation Research Program includes 29 members representing nine academic departments and one school. The Program is supported by $15,992,269 in funding, of which $2,918,008 is NCI funding and $11,690,123 is other peer reviewed funding. In the last grant period, members of the Cellular Proliferation Program published 433 manuscripts, of which 24.94% represented inter-programmatic, 4.15% represented intra-programmatic collaborations, and 2% ofthe inter-programmatic are also intraprogrammatic.

Public Health Relevance

Proteins that regulate the ability of cells to grow, divide and die are frequently missing or deregulated in cancer cells. Understanding how these proteins are regulated and what, in turn, they regulate is fundamental to understanding, diagnosing and treating cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-12
Application #
8520204
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
12
Fiscal Year
2013
Total Cost
$60,202
Indirect Cost
$53,163
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zuiani, Adam; Chen, Kevin; Schwarz, Megan C et al. (2016) A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I. J Virol 90:10499-10512
Abboud, Ramzi; Keller, Jesse; Slade, Michael et al. (2016) Severe Cytokine-Release Syndrome after T Cell-Replete Peripheral Blood Haploidentical Donor Transplantation Is Associated with Poor Survival and Anti-IL-6 Therapy Is Safe and Well Tolerated. Biol Blood Marrow Transplant 22:1851-60
Johnson, Kimberly J; Zoellner, Nancy L; Gutmann, David H (2016) Peri-gestational risk factors for pediatric brain tumors in Neurofibromatosis Type 1. Cancer Epidemiol 42:53-9
Brownson, Ross C; Dodson, Elizabeth A; Kerner, Jon F et al. (2016) Framing research for state policymakers who place a priority on cancer. Cancer Causes Control 27:1035-41
Chou, Chun; Verbaro, Daniel J; Tonc, Elena et al. (2016) The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses. Immunity 45:570-82
Durai, Vivek; Murphy, Kenneth M (2016) Functions of Murine Dendritic Cells. Immunity 45:719-736
Beeman, Scott C; Shui, Ying-Bo; Perez-Torres, Carlos J et al. (2016) O2 -sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magn Reson Med 75:2442-7
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Niu, Haixia; Hadwiger, Gayla; Fujiwara, Hideji et al. (2016) Pathways of retinoid synthesis in mouse macrophages and bone marrow cells. J Leukoc Biol 99:797-810
Willet, Spencer G; Mills, Jason C (2016) Stomach Organ and Cell Lineage Differentiation: from Embryogenesis to Adult Homeostasis. Cell Mol Gastroenterol Hepatol 2:546-559

Showing the most recent 10 out of 947 publications