Located in the heart of the University's medical complex, the Small Animal Cancer Imaging Core provides intellectual and physical resources devoted to magnetic resonance imaging (MRI), positron emission tomography, (PET), and optical tomography (OT) directed toward small laboratory animals such as hamsters, rats and mice. MRI resources include a high-field 11.7 tesla multinuclear scanner, one of only a few worldwide, and three 4.7 tesia multinuclear scanners. Recent upgrades of electronics consoles, gradient coils, and gradient power supplies, have restored these instruments to state-of-the-art quality. The PET/CT Component is centered on two microPET scanners from Siemens Medical, including a newly acquired, state-of-the-art Inveon microPET-CT instrument. Two cyclotrons and an associated radiochemistry laboratory are connected to the PET facility via a pneumatic tube system and a small-bore gas line for transport of liquid (contained in syringes) and gaseous radiopharmaceuticals. Both MRI and PET scanners offer sensitivity and resolution optimized for small-animal research. Additional resources for support of small-animal imaging include housing, physiologic support and monitoring equipment, surgical procedure rooms, wet chemistry laboratories, and data analysis and archival systems. The Core provides Siteman Cancer Center members with the latest in small-animal MRI, PET, and OT capabilities. Highly skilled staff members are available to assist, advise, and collaborate on projects of interest to Siteman members. For the last five years, the Small Animal Cancer Imaging Core has been supported primarily through the National Cancer Institute (NCI) Small Animal Imaging Resource Program (SAIRP). Washington University Small Animal Imaging Resource (WUSAIR) was one of the original five SAIRP centers, established in 1999, and received ~$3 million in total support from 2004 to 2009.

Public Health Relevance

MRI and PET are widely employed in the clinic;thus, new MR and PET imaging technology developed in the Small Animal Imaging Core can be seamlessly and immediately translated to the clinic for the direct benefit of cancer patients. In addition, the Core provides imaging platforms for pre-clinical development and assessment of new therapies for cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA091842-12
Application #
8520213
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
12
Fiscal Year
2013
Total Cost
$254,753
Indirect Cost
$53,162
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Zuiani, Adam; Chen, Kevin; Schwarz, Megan C et al. (2016) A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I. J Virol 90:10499-10512
Abboud, Ramzi; Keller, Jesse; Slade, Michael et al. (2016) Severe Cytokine-Release Syndrome after T Cell-Replete Peripheral Blood Haploidentical Donor Transplantation Is Associated with Poor Survival and Anti-IL-6 Therapy Is Safe and Well Tolerated. Biol Blood Marrow Transplant 22:1851-60
Johnson, Kimberly J; Zoellner, Nancy L; Gutmann, David H (2016) Peri-gestational risk factors for pediatric brain tumors in Neurofibromatosis Type 1. Cancer Epidemiol 42:53-9
Brownson, Ross C; Dodson, Elizabeth A; Kerner, Jon F et al. (2016) Framing research for state policymakers who place a priority on cancer. Cancer Causes Control 27:1035-41
Chou, Chun; Verbaro, Daniel J; Tonc, Elena et al. (2016) The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses. Immunity 45:570-82
Durai, Vivek; Murphy, Kenneth M (2016) Functions of Murine Dendritic Cells. Immunity 45:719-736
Beeman, Scott C; Shui, Ying-Bo; Perez-Torres, Carlos J et al. (2016) O2 -sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magn Reson Med 75:2442-7
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Niu, Haixia; Hadwiger, Gayla; Fujiwara, Hideji et al. (2016) Pathways of retinoid synthesis in mouse macrophages and bone marrow cells. J Leukoc Biol 99:797-810
Willet, Spencer G; Mills, Jason C (2016) Stomach Organ and Cell Lineage Differentiation: from Embryogenesis to Adult Homeostasis. Cell Mol Gastroenterol Hepatol 2:546-559

Showing the most recent 10 out of 947 publications