The Molecular Oncology Program of the University of California, Davis Cancer Center is focused on understanding fundamental processes associated with carcinogenesis and the molecular and cell biology of cancer cells. Within this framework the program integrates two distinct but related and mutually reinforcing areas, oncogenic signals and chromosome biology. Of particular interest is how cellular signals regulate chromatin remodeling with respect to the assembly of nuclear hormone receptors and DNA repair complexes. Genome instability is a common denominator for most, if not all, cancers, and misregulated signaling pathways are often the root cause for malignant transformation. Two central themes, 1) Cytoplasmic Signaling and Chromosome Dynamics and 2) Nuclear Signaling and Chromosome Stability, integrate a distinguished group of investigators. The programmatic goals are: 1) Discovery of critical molecules involved in the signaling to and function of transcriptional and DNA repair/recombination complexes In cancer cells;2) Identification of critical molecules in signaling and function of transcription and DNA repair as potential predictive markers and therapeutic targets in cancer;3) Collaboration with other programs to facilitate translational research originating in the basic scientific discoveries of the Molecular Oncology Program. The program has 35 members from 10 different academic units of UC Davis and LLNL. It has 16 NCl-funded projects for $2.4 million ADC (total peer-reviewed funding, $10.7 million ADC). The group has 449 publications for the last funding period;22% are inter-programmatic and 10% are intra-programmatic

Public Health Relevance

): To Improve survival from cancer, more fundamental information must be gained. This program contributes to this task by discovering how cells alter the way In which they signal as they move from normal to cancer. The program also focuses on understanding how DNA Is repaired. DNA repair may initially stop cancers developing;however, after cancer is present, alterations in DNA repair may influence the tumor's response to therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743639
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$19,487
Indirect Cost
$6,792
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Shih, Tsung-Chieh; Liu, Ruiwu; Wu, Chun-Te et al. (2018) Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion. Clin Cancer Res 24:4319-4331
Weiss, Robert H (2018) Metabolomics and Metabolic Reprogramming in Kidney Cancer. Semin Nephrol 38:175-182
Hegde, John V; Shaverdian, Narek; Daly, Megan E et al. (2018) Patient-reported quality-of-life outcomes after de-escalated chemoradiation for human papillomavirus-positive oropharyngeal carcinoma: Findings from a phase 2 trial. Cancer 124:521-529
Arun, Adith S; Tepper, Clifford G; Lam, Kit S (2018) Identification of integrin drug targets for 17 solid tumor types. Oncotarget 9:30146-30162
Tepper, Clifford G; Dang, Julie H T; Stewart, Susan L et al. (2018) High frequency of the PNPLA3 rs738409 [G] single-nucleotide polymorphism in Hmong individuals as a potential basis for a predisposition to chronic liver disease. Cancer 124 Suppl 7:1583-1589
Jerant, Anthony; Fenton, Joshua J; Kravitz, Richard L et al. (2018) Association of Clinician Denial of Patient Requests With Patient Satisfaction. JAMA Intern Med 178:85-91
Kirschbaum, Mark H; Frankel, Paul; Synold, Timothy W et al. (2018) A phase II study of vascular endothelial growth factor trap (Aflibercept, NSC 724770) in patients with myelodysplastic syndrome: a California Cancer Consortium Study. Br J Haematol 180:445-448
Besprozvannaya, Marina; Dickson, Eamonn; Li, Hao et al. (2018) GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. Elife 7:
Turner, David C; Kondic, Anna G; Anderson, Keaven M et al. (2018) Pembrolizumab Exposure-Response Assessments Challenged by Association of Cancer Cachexia and Catabolic Clearance. Clin Cancer Res 24:5841-5849
Matsumoto, Collin; Jiang, Yan; Emathinger, Jacqueline et al. (2018) Short Telomeres Induce p53 and Autophagy and Modulate Age-Associated Changes in Cardiac Progenitor Cell Fate. Stem Cells 36:868-880

Showing the most recent 10 out of 836 publications