The Biomedical Technology Program harnesses the expertise of scientists and engineers in collaboration with clinicians to develop new technologies, instruments, methods and algorithms that can be used for cancer screening, detection, diagnosis, treatment or treatment monitoring. The program draws primarily on science and engineering expertise from four key components, the Departments of Biomedical Engineering and Radiology at UC Davis, the NSF Center for Biophotonics Science and Technology (CBST), and the Lawrence Livermore National Laboratory (LLNL). In addition, clinical members of the program, from both the Medical School and School of Veterinary Medicine, with an expertise in radiology, radiafion oncology and surgery, are critical in guiding and supporting translational activities. Core themes of the program are technologies for cancer research and diagnosis, whole-body and organ imaging technologies, therapeutic technologies, biomarker discovery, and biosensors. These technologies span research, preclinical and clinical applications and include active collaborations with industry. They also cover spatial scales ranging from single molecules, through cells and tissues, to the whole-body level. The goals of the Biomedical Technology Program include: 1) create an environment that encourages development of technologies to address critical questions in cancer research and cancer care, 2) foster interactions between engineers, physicists and chemists with cancer biologists and physicians to guide the development process, 3) catalyze interactions to enable testing and validation of these technologies in pre-clinical models of cancer and in clinical settings;4) make technologies accessible through collaboration with cancer researchers and clinicians in other Cancer Center programs or via the shared resources as appropriate and 5) encourage interactions with industry that can lead to broader dissemination and adoption of these technologies. The program has 36 members from 10 different departments of UC Davis and 6 departments of LLNL. It has 18 NCl-funded projects for $3.2 million ADC (total peer-reviewed funding, $8.8 million ADC). The group has 869 publications for the last funding period;22% are inter-programmatic and 11% are intra-programmatic.

Public Health Relevance

This program brings together individuals from very different disciplines so that discoverise in the worlds of physics, mathematics, and engineering can through interactions with individuals in the medical and vet school be utilized to improve all aspects of the cancer continuum from prevention to cure.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743644
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$22,221
Indirect Cost
$7,744
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Zhang, Jin; Lucchesi, Christopher; Chen, Xinbin (2016) A new function for p53 tetramerization domain in cell fate control. Cell Cycle 15:2854-2855
Vinall, Ruth L; Tepper, Clifford G; Ripoll, Alexandra A Z et al. (2016) Decreased expression of let-7c is associated with non-response of muscle-invasive bladder cancer patients to neoadjuvant chemotherapy. Genes Cancer 7:86-97
Kirschbaum, Mark H; Frankel, Paul; Synold, Timothy W et al. (2016) A phase I pharmacodynamic study of GTI-2040, an antisense oligonucleotide against ribonuclotide reductase, in acute leukemias: a California Cancer Consortium study. Leuk Lymphoma 57:2307-14
Taché, Véronique; Bivina, Liga; White, Sophie et al. (2016) Lipoyltransferase 1 Gene Defect Resulting in Fatal Lactic Acidosis in Two Siblings. Case Rep Obstet Gynecol 2016:6520148
Lara, Joshua; Brunson, Ann; Keegan, Theresa H M et al. (2016) Determinants of Survival for Adolescents and Young Adults with Urothelial Bladder Cancer: Results from the California Cancer Registry. J Urol 196:1378-1382
Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J et al. (2016) Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location. Eur Urol 70:14-7
Dang, Julie H T; Chen Jr, Moon S (2016) Increasing Hepatitis B Testing and Linkage to Care of Foreign-Born Asians, Sacramento, California, 2012-2013. Public Health Rep 131 Suppl 2:119-24
Rowson-Hodel, Ashley R; Berg, Anastasia L; Wald, Jessica H et al. (2016) Hexamethylene amiloride engages a novel reactive oxygen species- and lysosome-dependent programmed necrotic mechanism to selectively target breast cancer cells. Cancer Lett 375:62-72
Zhao, Yong; Tu, Mei-Juan; Wang, Wei-Peng et al. (2016) Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest. Sci Rep 6:26611
Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K et al. (2016) Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies. Clin Cancer Res 22:4328-40

Showing the most recent 10 out of 608 publications