The Biomedical Technology Program harnesses the expertise of scientists and engineers in collaboration with clinicians to develop new technologies, instruments, methods and algorithms that can be used for cancer screening, detection, diagnosis, treatment or treatment monitoring. The program draws primarily on science and engineering expertise from four key components, the Departments of Biomedical Engineering and Radiology at UC Davis, the NSF Center for Biophotonics Science and Technology (CBST), and the Lawrence Livermore National Laboratory (LLNL). In addition, clinical members of the program, from both the Medical School and School of Veterinary Medicine, with an expertise in radiology, radiafion oncology and surgery, are critical in guiding and supporting translational activities. Core themes of the program are technologies for cancer research and diagnosis, whole-body and organ imaging technologies, therapeutic technologies, biomarker discovery, and biosensors. These technologies span research, preclinical and clinical applications and include active collaborations with industry. They also cover spatial scales ranging from single molecules, through cells and tissues, to the whole-body level. The goals of the Biomedical Technology Program include: 1) create an environment that encourages development of technologies to address critical questions in cancer research and cancer care, 2) foster interactions between engineers, physicists and chemists with cancer biologists and physicians to guide the development process, 3) catalyze interactions to enable testing and validation of these technologies in pre-clinical models of cancer and in clinical settings;4) make technologies accessible through collaboration with cancer researchers and clinicians in other Cancer Center programs or via the shared resources as appropriate and 5) encourage interactions with industry that can lead to broader dissemination and adoption of these technologies. The program has 36 members from 10 different departments of UC Davis and 6 departments of LLNL. It has 18 NCl-funded projects for $3.2 million ADC (total peer-reviewed funding, $8.8 million ADC). The group has 869 publications for the last funding period;22% are inter-programmatic and 11% are intra-programmatic.

Public Health Relevance

This program brings together individuals from very different disciplines so that discoverise in the worlds of physics, mathematics, and engineering can through interactions with individuals in the medical and vet school be utilized to improve all aspects of the cancer continuum from prevention to cure.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
United States
Zip Code
Zeng, Shu-Xiong; Zhu, Yanjun; Ma, Ai-Hong et al. (2017) The Phosphatidylinositol 3-Kinase Pathway as a Potential Therapeutic Target in Bladder Cancer. Clin Cancer Res 23:6580-6591
Zhong, Cheng; Han, Ju; Borowsky, Alexander et al. (2017) When machine vision meets histology: A comparative evaluation of model architecture for classification of histology sections. Med Image Anal 35:530-543
Gingrich, Alicia A; Elias, Alexandra; Michael Lee, Chia-Yuan et al. (2017) Predictors of residual disease after unplanned excision of soft tissue sarcomas. J Surg Res 208:26-32
Li, Tianhong; Piperdi, Bilal; Walsh, William V et al. (2017) Randomized Phase 2 Trial of Pharmacodynamic Separation of Pemetrexed and Intercalated Erlotinib Versus Pemetrexed Alone for Advanced Nonsquamous, Non-small-cell Lung Cancer. Clin Lung Cancer 18:60-67
York, D; Sproul, C D; Chikere, N et al. (2017) Expression and targeting of transcription factor ATF5 in dog gliomas. Vet Comp Oncol :
Yap, Stanley A; Yuh, Lindsay M; Evans, Christopher P et al. (2017) Evolving patterns of care in the management of stage I non-seminomatous germ cell tumors: data from the California Cancer Registry. World J Urol 35:277-283
(2017) New and emerging developments in extensive-stage small cell lung cancer therapeutics: Erratum. Curr Opin Oncol 29:88
Johnson, Lianna M; Du, Jiamu; Hale, Christopher J et al. (2017) Corrigendum: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 543:136
Jian, Chao; Tu, Mei-Juan; Ho, Pui Yan et al. (2017) Co-targeting of DNA, RNA, and protein molecules provides optimal outcomes for treating osteosarcoma and pulmonary metastasis in spontaneous and experimental metastasis mouse models. Oncotarget 8:30742-30755
Wan, Debin; Yang, Jun; Barnych, Bogdan et al. (2017) A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J Lipid Res 58:798-808

Showing the most recent 10 out of 733 publications