The UC Davis Cancer Center Mouse Biology (MB) shared resource is one of the original Cores initially established by the first CCSG submission. When first reviewed, the newly conceived and created MB shared resource received a rating score of "outstanding" and several laudable comments from CCSG reviewers. Building upon that earlier success, and recognizing the essential importance of inducant mutations in the mouse genome to advances in research on the biology, diagnosis, treatment, and prevention of cancer in humans, the MB shared resource continues to be a critically integral component of the research mission of the Cancer Center. Utilizing the wide breadth and depth of expertise and infrastructure of the UC Davis Mouse Biology Program, this Core serves and supports cancer-related research by cancer center members utilizing genetically-altered mice. The Core provides all of the necessary technical elements for de novo creation and derivation of transgenic, knockout, and other types of induced mutant mice, husbandry, maintenance, health-care, and well-being of mice, and an extensive array of genotyping and phenotyping capabilities and services to Cancer Center members on a prioritized basis and at a subsidized cost. In addition. Core leadership faculty and their associates contribute intellectually to the development of research areas and projects by Cancer Center members who incorporate genetically altered mice into their research. Since its inception, the success of this Core to the overall mission of the Cancer Center is immediately evident by noting the accomplishments of the 32 Cancer Center members requesting more than 1300 Core services in support of their cancer-related research during the first 3 years of the CCSG. In this competitive renewal, the Core intends to continue to offer superior technical excellence and scientific input in anticipation ofan increasing number of requests from Cancer Center members during the next 5 years.
The specific aims of the MB shared resource are divided into 3 principal service categories: 1) Mouse Model Creation Services;2) Mouse Husbandry and Maintenance Services;and 3) Mouse Genotyping and Phenotyping Services .

Public Health Relevance

Rodent models of cancer are a key tool in understand the development of tumors, and the efficacy of cancer treatments and cancer imaging substances. This resource makes such models available to researchers and therefore is very important to the conduct of cancer research, and ultimately to the development of more effective diagnostic and therapeutic strategies for the detection and cure of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743647
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$128,474
Indirect Cost
$44,772
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Semrad, Thomas; Barzi, Afsaneh; Lenz, Heinz-Josef et al. (2015) Pharmacodynamic separation of gemcitabine and erlotinib in locally advanced or metastatic pancreatic cancer: therapeutic and biomarker results. Int J Clin Oncol 20:518-24
Brostoff, Terza; Dela Cruz Jr, Florante N; Church, Molly E et al. (2014) The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors. J Virol 88:12816-24
Kirschbaum, Mark H; Foon, Kenneth A; Frankel, Paul et al. (2014) A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk Lymphoma 55:2301-4
Mayadev, Jyoti; Qi, Lihong; Lentz, Susan et al. (2014) Implant time and process efficiency for CT-guided high-dose-rate brachytherapy for cervical cancer. Brachytherapy 13:233-9
Daly, Megan E; Beckett, Laurel A; Chen, Allen M (2014) Does early posttreatment surveillance imaging affect subsequent management following stereotactic body radiation therapy for early-stage non-small cell lung cancer? Pract Radiat Oncol 4:240-6
Li, Tianhong; Maus, Martin K H; Desai, Sonal J et al. (2014) Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays. J Thorac Oncol 9:18-25
Campbell, Mel; Kim, Kevin Y; Chang, Pei-Ching et al. (2014) A lytic viral long noncoding RNA modulates the function of a latent protein. J Virol 88:1843-8
Li, Tianhong; Kung, Hsing-Jien; Mack, Philip C et al. (2013) Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol 31:1039-49
Semrad, Thomas J; Eddings, Courtney; Dutia, Mrinal P et al. (2013) Phase I study of the combination of temsirolimus and pazopanib in advanced solid tumors. Anticancer Drugs 24:636-40
Maus, Martin K H; Mack, Philip C; Astrow, Stephanie H et al. (2013) Histology-related associations of ERCC1, RRM1, and TS biomarkers in patients with non-small-cell lung cancer: implications for therapy. J Thorac Oncol 8:582-6

Showing the most recent 10 out of 84 publications