Combinatorial library methods not only offer great potential for facilitating the drug discovery process but also provide powerful tools for basic research in various disciplines. These methods enable investigators to generate large number of chemical compounds that can be used as valuable source for the discovery of drug leads, molecular imaging agents, and capturing agents for molecular markers. In the area of basic research, large collections of chemical compounds can be used to probe their effects on specific cellular function. In the past 4 years, the combinatorial chemistry developing core has been assisting several Cancer Center investigators in the application of combinatorial chemistry to their research. These efforts have resulted in the submission and funding of several extramural grants. Based on the encouraging outcome and suggestion by our external advisory board, we plan to advance the combinatorial developing core to a full shared resource. The proposed combinatorial chemistry shared resource (CCSR7) will provide training and support for cancer center members to apply the ultra-high throughput one-bead-one-compound (OBOC) technologies for their research. Many OBOC combinatorial libraries (peptides, peptidomimetic, glycopeptides, small molecules, macrocyclic and glyco-organic libraries) will be designed and synthesized by the CCSR7 scientists. We have proposed to develop twenty-seven OBOC chemical libraries over the five year period. CCSR7 will also provide synthetic organic and medicinal chemistry expertise on working with the resource users for optimization of the lead compounds. CCSR7 will also provide synthetic organic and medicinal chemistry expertise on working with the resource users for optimization ofthe lead compounds.

Public Health Relevance

Through training and support by CCSR7, cancer center investigators will have the opportunity to apply the enabling OBOC combinatorial technology for their research. It is expected that chemical molecules useful for cancer research and lead compounds for the development of cancer therapeutic and imaging agents will be discovered through such efforts.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-12
Application #
8743651
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
$93,378
Indirect Cost
$32,540
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Zhang, Jin; Lucchesi, Christopher; Chen, Xinbin (2016) A new function for p53 tetramerization domain in cell fate control. Cell Cycle 15:2854-2855
Vinall, Ruth L; Tepper, Clifford G; Ripoll, Alexandra A Z et al. (2016) Decreased expression of let-7c is associated with non-response of muscle-invasive bladder cancer patients to neoadjuvant chemotherapy. Genes Cancer 7:86-97
Kirschbaum, Mark H; Frankel, Paul; Synold, Timothy W et al. (2016) A phase I pharmacodynamic study of GTI-2040, an antisense oligonucleotide against ribonuclotide reductase, in acute leukemias: a California Cancer Consortium study. Leuk Lymphoma 57:2307-14
Taché, Véronique; Bivina, Liga; White, Sophie et al. (2016) Lipoyltransferase 1 Gene Defect Resulting in Fatal Lactic Acidosis in Two Siblings. Case Rep Obstet Gynecol 2016:6520148
Lara, Joshua; Brunson, Ann; Keegan, Theresa H M et al. (2016) Determinants of Survival for Adolescents and Young Adults with Urothelial Bladder Cancer: Results from the California Cancer Registry. J Urol 196:1378-1382
Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J et al. (2016) Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location. Eur Urol 70:14-7
Dang, Julie H T; Chen Jr, Moon S (2016) Increasing Hepatitis B Testing and Linkage to Care of Foreign-Born Asians, Sacramento, California, 2012-2013. Public Health Rep 131 Suppl 2:119-24
Rowson-Hodel, Ashley R; Berg, Anastasia L; Wald, Jessica H et al. (2016) Hexamethylene amiloride engages a novel reactive oxygen species- and lysosome-dependent programmed necrotic mechanism to selectively target breast cancer cells. Cancer Lett 375:62-72
Zhao, Yong; Tu, Mei-Juan; Wang, Wei-Peng et al. (2016) Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest. Sci Rep 6:26611
Monjazeb, Arta M; Kent, Michael S; Grossenbacher, Steven K et al. (2016) Blocking Indolamine-2,3-Dioxygenase Rebound Immune Suppression Boosts Antitumor Effects of Radio-Immunotherapy in Murine Models and Spontaneous Canine Malignancies. Clin Cancer Res 22:4328-40

Showing the most recent 10 out of 608 publications