The UC Davis Comprehensive Cancer Center (CCC) Mouse Biology (MB) Shared Resource (SR) is one of the original cores initially established by the first CCSG submission. At the last competitive renewal, the MB SR received a rating score of outstanding to exceptional and several laudable comments from CCSG reviewers. Building upon that earlier success, and recognizing the essential importance of indicant mutations in the mouse genome to advances in research on the biology, diagnosis, treatment, and prevention of cancer in humans, the MB SR continues to be a critically integral component of the research mission of the CCC. Utilizing the wide breadth and depth of expertise and infrastructure of the UC Davis Mouse Biology Program, the MB SR serves and supports cancer-related research by CCC members utilizing genetically-altered mice. The MB SR provides all of the necessary technical elements for de novo creation and derivation of transgenic, knockout, and other types of induced mutant mice, husbandry, maintenance, health-care, and well-being of mice, and an extensive array of genotyping and phenotyping capabilities and services to CCC members on a prioritized basis and at a subsidized cost. In addition, MB SR leadership faculty and their associates contribute intellectually to the development of research areas and projects by CCC members who incorporate mouse models into their research. Since its inception, the success of the MB SR to the overall mission of the CCC is immediately evident by noting the accomplishments of the 25 CCC members requesting more than 26,309 services in support of their cancer-related research in just the last year of the CCSG. In this competitive renewal, the MB SR intends to continue to offer superior technical excellence and scientific input in anticipation of an increasing number of requests from CCC members during the next 5 years.
The specific aims of the MB SR are divided into 3 principal service categories: 1) Mouse Modeling and Creation Services; 2) Mouse Husbandry and Maintenance Services; and 3) Mouse Genotyping and Phenotyping Services.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA093373-15
Application #
9327881
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
15
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Li, Peng-Cheng; Tu, Mei-Juan; Ho, Pui Yan et al. (2018) Bioengineered NRF2-siRNA Is Effective to Interfere with NRF2 Pathways and Improve Chemosensitivity of Human Cancer Cells. Drug Metab Dispos 46:2-10
Lucchesi, Christopher A; Zhang, Jin; Ma, Buyong et al. (2018) Disruption of the Rbm38-eIF4E complex with a synthetic peptide Pep8 increases p53 expression. Cancer Res :
Kiuru, Maija; Tartar, Danielle M; Qi, Lihong et al. (2018) Improving classification of melanocytic nevi: Association of BRAF V600E expression with distinct histomorphologic features. J Am Acad Dermatol 79:221-229
Pargett, Michael; Albeck, John G (2018) Live-Cell Imaging and Analysis with Multiple Genetically Encoded Reporters. Curr Protoc Cell Biol 78:4.36.1-4.36.19
Fishman, Scott M; Carr, Daniel B; Hogans, Beth et al. (2018) Scope and Nature of Pain- and Analgesia-Related Content of the United States Medical Licensing Examination (USMLE). Pain Med 19:449-459
Lewis, Daniel D; Chavez, Michael; Chiu, Kwan Lun et al. (2018) Reconfigurable Analog Signal Processing by Living Cells. ACS Synth Biol 7:107-120
Braithwaite, Dejana; Miglioretti, Diana L; Zhu, Weiwei et al. (2018) Family History and Breast Cancer Risk Among Older Women in the Breast Cancer Surveillance Consortium Cohort. JAMA Intern Med 178:494-501
Unger, Jakob; Sun, Tianchen; Chen, Yi-Ling et al. (2018) Method for accurate registration of tissue autofluorescence imaging data with corresponding histology: a means for enhanced tumor margin assessment. J Biomed Opt 23:1-11
Winer, Rachel L; Tiro, Jasmin A; Miglioretti, Diana L et al. (2018) Rationale and design of the HOME trial: A pragmatic randomized controlled trial of home-based human papillomavirus (HPV) self-sampling for increasing cervical cancer screening uptake and effectiveness in a U.S. healthcare system. Contemp Clin Trials 64:77-87
Wang, Guobao; Corwin, Michael T; Olson, Kristin A et al. (2018) Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function. Phys Med Biol 63:155004

Showing the most recent 10 out of 836 publications