The Cancer Biology and Biotechnology Research Program at the University of New Mexico Cancer Center is a highly interactive transdisciplinary program with 24 Program Members from 6 Departments in the UNM School of Medicine (Biochemistry and Molecular Biology, Cell Biology and Physiology, Medicine, Molecular Genefics and Microbiology, Neurology, and Pathology), the UNM College of Pharmacy, 3 Departments on the UNM Main Campus (Biology, Chemical and Nuclear Engineering, and Physics and Astronomy), New Mexico State University (Chemistry), and Sandia and Los Alamos Nafional Laboratories. The Program has two scientific themes;the first: Chromosome Dynamics and Macromolecular Interactions has the goals of (1) discovering the fundamental mechanisms of tumorigenesis through studies of epigenefic, transcripfional, cell growth control, and DNA damage repair pathways in cancer cells and model organisms;and (2) exploiting studies of viral protein-nucleic acid interacfions for translafion into new dlagnosfic or therapeufic platforms. The second program theme: Biotechnology and Target Screening has the overall goal of discovering and validating novel targets and small molecules from these fundamental regulatory pathways for cancer diagnosis, screening, prevention, and therapy. To achieve the goals of this second theme, program members develop and utilize (1) high-throughput small molecule screening, high performance compufing, cheminformafics, and animal modeling;(2) novel isotopes and imaging;and (3) micro- and nanotechnology to discover, screen, and model new cancer targets. Since the prior NCI CCSG review in 2005, the Program's funding, intraprogrammafic, and inter-programmafic interacfions have all increased dramafically. Program members direct one of only 9 nafional, mulfi-invesfigator NIH Roadmap-funded Center Grants for target screening and chemical biology: The UNM Center for Molecular Discovery (U54MH084690) which is collaborating with each UNM Cancer Center Research Program and several other NCI Cancer Centers to screen and characterize over 30 novel cancer targets. Program members also recenfiy received nofice of the funding of two highly compefifive NCI ARRA Challenge Grants {RC2CA148982;RC1EB/CA010617). As of September 2009, Program Members at the UNM Cancer Center and its consortium institufions held $9,538,635 in total annual direct funding (represenfing an 80% increase in funding since 2005) of which $8,365,143 was peer-reviewed ($1,537,027 from NCI and $6,828,116 from NIH, NSF, DOD, and DOE). Program members at New Mexico State University held an additional $2,965,296 in annual peer-reviewed funding. In 2008, program members published a total of 53 cancer-relevant publicafions, of which 27% were intra-programmafic and 48% were inter-programmatic.

Public Health Relevance

Cancer is a multifactorial disease that requires transdisciplinary approaches to understand its etiology and translate these discoveries to more effective diagnostics and therapeutics. The goals of The Cancer Biology and Biotechnology Program are to study the most fundamental cellular pathways that are perturbed in human cancers and that promote cancer efiology and progression and to develop and use the most innovative science and technology to discover and characterize new cellular targets that can be used to diagnosis, screen, prevent, and treat human cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of New Mexico Health Sciences Center
United States
Zip Code
Flook, Adam M; Yang, Jianquan; Miao, Yubin (2014) Substitution of the Lys linker with the ?-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated ?-melanocyte stimulating hormone peptides. J Med Chem 57:9010-8
Davies, Suzy; Holmes, Anna; Lomo, Lesley et al. (2014) High incidence of ErbB3, ErbB4, and MET expression in ovarian cancer. Int J Gynecol Pathol 33:402-10
Wu, Yang; Tapia, Phillip H; Jarvik, Jonathan et al. (2014) Real-time detection of protein trafficking with high-throughput flow cytometry (HTFC) and fluorogen-activating protein (FAP) base biosensor. Curr Protoc Cytom 67:Unit 9.43.
Morris, K T; Khan, H; Ahmad, A et al. (2014) G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration. Br J Cancer 110:1211-20
Vaughan, Roger A; Gannon, Nicholas P; Garcia-Smith, Randi et al. (2014) ?-alanine suppresses malignant breast epithelial cell aggressiveness through alterations in metabolism and cellular acidity in vitro. Mol Cancer 13:14
Lu, Jie; Hathaway, Helen J; Royce, Melanie E et al. (2014) Introduction of D-phenylalanine enhanced the receptor binding affinities of gonadotropin-releasing hormone peptides. Bioorg Med Chem Lett 24:725-30
Campen, Matthew J; Paffett, Michael L; Colombo, E Sage et al. (2014) Muscle RING finger-1 promotes a maladaptive phenotype in chronic hypoxia-induced right ventricular remodeling. PLoS One 9:e97084
Yang, Jianquan; Flook, Adam M; Feng, Changjian et al. (2014) Linker modification reduced the renal uptake of technetium-99m-labeled Arg-Ala-Asp-conjugated alpha-melanocyte stimulating hormone peptide. Bioorg Med Chem Lett 24:195-8
Hill, Jeff W; Thompson, Jeffrey F; Carter, Mark B et al. (2014) Identification of isoxsuprine hydrochloride as a neuroprotectant in ischemic stroke through cell-based high-throughput screening. PLoS One 9:e96761
Scaling, Allison L; Prossnitz, Eric R; Hathaway, Helen J (2014) GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast. Horm Cancer 5:146-60

Showing the most recent 10 out of 123 publications