The goal of the Lymphoma and Hodgkin Disease Program is to gain a better understanding of the biology underlying lymphoid neoplasms and to apply this knowledge to improve the diagnosis and treatment of these disorders. In working toward this goal, we have a broad research program with major themes of lymphoma pathogenesis, clinical pathological relationships, novel therapeutics and clinical trials. Our resources include a large clinical database of >10,000 lymphoma and 5,000 Hodgkin lymphoma over a follow-up period of 40 years and a tissue bank containing 5,500 fresh-frozen specimens. The 27 members within our program represent 11 departments within the School of Medicine and the School of Engineering. Investigators in the Lymphoma and Hodgkin Disease Program have 16 grants, including 1 P01;1 SCOR;1 P20;4 R01;1 T32;3 K and other peer-reviewed awards. The annual direct NCI support in 2008 totaled $3.5 million. Our program has emphasized translational research to the clinic in diagnostics and novel therapeutics and from the clinic to the laboratory in the correlation of studies on tissues matched with clinical events. During the past five years, over 300 publications have appeared in peer-reviewed journals. Laboratory-based projects are focused on the detection of signaling pathways in individual cells;lymphomagenesis, with attention to the MYC oncogene and the immune response to hepatitis C;development of novel diagnostics, including new gene discovery and new monoclonal antibodies directed against these genes;and model systems for a new method of therapeutic vaccination. Our clinical studies have a focus on immunotherapy and novel combined modality treatments and concepts from our group have moved into influential Phase III clinical trials in the Eastern Cooperative Oncology Group (ECOG).

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Lee, Bee L; Fan, Shenghua K; Lu, Ying (2017) A curve-free Bayesian decision-theoretic design for two-agent Phase I trials. J Biopharm Stat 27:34-43
Mohanty, Suchismita; Chen, Zixin; Li, Kai et al. (2017) A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 16:1909-1921
Alcántara-Hernández, Marcela; Leylek, Rebecca; Wagar, Lisa E et al. (2017) High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity 47:1037-1050.e6
Chao, Mark P; Gentles, Andrew J; Chatterjee, Susmita et al. (2017) Human AML-iPSCs Reacquire Leukemic Properties after Differentiation and Model Clonal Variation of Disease. Cell Stem Cell 20:329-344.e7
Rogers, Zoë N; McFarland, Christopher D; Winters, Ian P et al. (2017) A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods 14:737-742
Sun, Ruping; Hu, Zheng; Sottoriva, Andrea et al. (2017) Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat Genet 49:1015-1024
Jin, Yuxue; Lai, Tze Leung (2017) A new approach to regression analysis of censored competing-risks data. Lifetime Data Anal 23:605-625
Clarke, Christina A; Glaser, Sally L; Leung, Rita et al. (2017) Prevalence and characteristics of cancer patients receiving care from single vs. multiple institutions. Cancer Epidemiol 46:27-33
Han, Summer S; Ten Haaf, Kevin; Hazelton, William D et al. (2017) The impact of overdiagnosis on the selection of efficient lung cancer screening strategies. Int J Cancer 140:2436-2443
Wender, Paul A; Hardman, Clayton T; Ho, Stephen et al. (2017) Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV. Science 358:218-223

Showing the most recent 10 out of 227 publications