The Cancer Epidemiology Program (CEP) brings together 25 investigators from 11 Departments at Stanford and the Northern California Cancer Center (NCCC) in a collaborative approach to reducing the burden, incidence, mortality and morbidity of cancer through innovative and interdisciplinary epidemiologic research. This goal is accomplished through observational research in four areas: cancer surveillance;cancer etiology and risk assessment;early cancer detection;and cancer treatment, prognosis and quality of life. The study of disparities among racial/ethnic/cultural groups forms a theme cross cutting all of these areas.
The specific aims of the four targeted research areas are: ? Cancer surveillance: Describe cancer risk factors and spatial and temporal trends in cancer incidence and mortality;identify scientific hypotheses for further study;conduct methodologic studies to improve data quality;and gather data as new technologies and treatments are introduced into medical practice. ? Cancer etiology and risk assessment: Convene multidisciplinary expertise to study the complex interactions of molecular, genetic, behavioral and environment factors that affect cancer occurrence. ? Early detection of cancer: Evaluate the use of new technologies to detect cancers before they have spread and increase understanding of the risks and benefits of screening. ? Cancer care, prognosis and quality of life: Conduct observational studies of cancer treatments and other cancer care to determine their diffusion, utilization and effect on patient outcomes by characteristics of patients, providers and delivery systems. Identify genetic, molecular and other determinants of recurrence and survival in cancer patients, and factors related to quality of life for cancer patients and families.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA124435-08
Application #
8685164
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
8
Fiscal Year
2014
Total Cost
$54,434
Indirect Cost
$38,624
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Patel, Manali I; Sundaram, Vandana; Desai, Manisha et al. (2018) Effect of a Lay Health Worker Intervention on Goals-of-Care Documentation and on Health Care Use, Costs, and Satisfaction Among Patients With Cancer: A Randomized Clinical Trial. JAMA Oncol 4:1359-1366
Trieu, Vanessa; Pinto, Harlan; Riess, Jonathan W et al. (2018) Weekly Docetaxel, Cisplatin, and Cetuximab in Palliative Treatment of Patients with Squamous Cell Carcinoma of the Head and Neck. Oncologist 23:764-e86
Kuonen, François; Surbeck, Isabelle; Sarin, Kavita Y et al. (2018) TGF?, Fibronectin and Integrin ?5?1 Promote Invasion in Basal Cell Carcinoma. J Invest Dermatol 138:2432-2442
Gee, Marvin H; Han, Arnold; Lofgren, Shane M et al. (2018) Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 172:549-563.e16
Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J et al. (2018) Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173:338-354.e15
Banerjee, Imon; Gensheimer, Michael Francis; Wood, Douglas J et al. (2018) Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Sci Rep 8:10037
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14
Rogers, Zoë N; McFarland, Christopher D; Winters, Ian P et al. (2018) Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 50:483-486
Nair, Viswam S; Sundaram, Vandana; Desai, Manisha et al. (2018) Accuracy of Models to Identify Lung Nodule Cancer Risk in the National Lung Screening Trial. Am J Respir Crit Care Med 197:1220-1223
She, Richard; Jarosz, Daniel F (2018) Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell 172:478-490.e15

Showing the most recent 10 out of 322 publications