The Genomics Shared Resource (GSR) is a state-of-the-art genomics facility dedicated to providing the latest genomic research tools at low-cost. The primary goal of the GSR is to facilitate high-impact genomic-based cancer research by Stanford Cancer Center members. This goal is accomplished by providing Cancer Center members with access to cutting-edge technologies and providing the services, expertise, and scientific support necessary for utilizing these genomic tools. Technologies and services currently provided by the GSR include: high-throughput sequencing (Illumina Genome Analyzer II, ABI SOLID, Roche Genome Sequencer FLX, and Helicos HeliScope), microarray services utilizing Affymetrix, Agilent, Illumina, Nimblegen, Stanford, and other platforms, genotyping services utilizing the Affymetrix and Illumina platforms, real-time quantitative PCR. Genomic reagents, such as clones, microarrays, and spike-in controls are also provided. Expert assistance with the use of these technologies is also provided throughout the entire experimental process. Guidance with experimental design, data analysis, data archiving and publication is a major component of the GSR. The resources of the Stanford Functional Genomics Facility (SFGF), Protein and Nucleic Acid Facility (PAN), and Stanford Microarray Database (SMD) have combined to provide the full spectrum of services offered by the Genomics Shared Resource and has a total combined operating budget of $2.8M. John Coiler, PhD (SFGF), is the Director of the shared resource, and Catherine Ball, PhD (SMD) and Michael Eckart, PhD (PAN) co-direct the GSR. Patrick Brown, MD, PhD and Gavin Sherlock, PhD are faculty advisors. There are currently 96 Cancer Center members using the shared resource, representing all program affiliations. Future goals are to increase access to high-throughput sequencing technologies and improve bioinformatics support and infrastructure required to implement the latest generation of genomics tools.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA124435-08
Application #
8685173
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
8
Fiscal Year
2014
Total Cost
$175,513
Indirect Cost
$38,623
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Ganjoo, Kristen; Hong, Fangxin; Horning, Sandra J et al. (2014) Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: an Eastern Cooperative Oncology Group study (E2404). Leuk Lymphoma 55:768-72
Chiou, Shin-Heng; Kim-Kiselak, Caroline; Risca, Viviana I et al. (2014) A conditional system to specifically link disruption of protein-coding function with reporter expression in mice. Cell Rep 7:2078-86
Zhu, Gefei Alex; Danial, Christina; Liu, Andy et al. (2014) Overall and progression-free survival in metastatic basosquamous cancer: a case series. J Am Acad Dermatol 70:1145-6
Caswell, Deborah R; Chuang, Chen-Hua; Yang, Dian et al. (2014) Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov 4:781-9
Bartroff, Jay; Lai, Tze Leung; Narasimhan, Balasubramanian (2014) A new approach to designing phase I-II cancer trials for cytotoxic chemotherapies. Stat Med 33:2718-35
Kohrt, Holbrook E; Thielens, Ariane; Marabelle, Aurelien et al. (2014) Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood 123:678-86
DiCarlo, Joseph; Agarwal-Hashmi, Rajni; Shah, Ami et al. (2014) Cytokine and chemokine patterns across 100 days after hematopoietic stem cell transplantation in children. Biol Blood Marrow Transplant 20:361-9
Chang, Serena; Kohrt, Holbrook; Maecker, Holden T (2014) Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 63:713-9
Ansari, Celina; Tikhomirov, Grigory A; Hong, Su Hyun et al. (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566-75, 417
Lavori, Philip W; Dawson, Ree (2014) Introduction to dynamic treatment strategies and sequential multiple assignment randomization. Clin Trials 11:393-399

Showing the most recent 10 out of 24 publications