The objectives of the Genetically Engineered Mouse (GEM) shared resource is to aid Cancer Center investigators with the design and execution of experiments to utilize animal models for the investigation of the progression of cancer and in the preclinical evaluation of therapies for the treatment of cancer. Although the use of animal models provides an invaluable source of reagents for preclinical testing and the investigation of regulatory mechanisms in vivo, in a physiologically regulated system, the use of animals is costly with respect to equipment, animal resources and technical expertise. GEM will serve as a resource for the execution and training in the use of all animal manipulations needed in the Cancer Center. The GEM shared resource will minimize the cost of utilizing animal models in the Cancer Center by consolidating animal expertise and associated equipment. This will ensure an efficient use of animal research at minimal cost. The GEM shared resource will serve Cancer Center investigatory by aiding in the following tasks. 1. Generate transgenic mice by the micro injection of DNA into the one celled mouse embryo. 2. Generate mutant mice by the manipulation of mouse Embryonic Stem Cells. 3. Preserve lines of mice by cryopreservation. 4 Assist investigators with the importation and exporting of lines of mice. The accomplishments of these tasks will allow the GEM Shared Resource to serve as a repository for all genetically engineered mouse models and techniques for Cancer Center investigators and will ensure efficient use of animal resources by Cancer Center investigators.

Public Health Relevance

The GEM Shared Resource will provide Cancer Center Investigators with the ability to investigate both the causes of cancer in vivo. This will aide in the development of improved cancer therapies for treatments and diagnostics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-07
Application #
8515955
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
7
Fiscal Year
2013
Total Cost
$151,948
Indirect Cost
$46,524
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Kundu, S T; Byers, L A; Peng, D H et al. (2016) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173-86
Treviño, Lindsey S; Bolt, Michael J; Grimm, Sandra L et al. (2016) Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK. Mol Endocrinol 30:158-72
Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro et al. (2016) GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Mol Ther 24:1135-49
Giudice, Jimena; Loehr, James A; Rodney, George G et al. (2016) Alternative Splicing of Four Trafficking Genes Regulates Myofiber Structure and Skeletal Muscle Physiology. Cell Rep 17:1923-1933
Li, Yiting; Nakka, Manjula; Kelly, Aaron J et al. (2016) p27 Is a Candidate Prognostic Biomarker and Metastatic Promoter in Osteosarcoma. Cancer Res 76:4002-11
Ren, Yi A; Liu, Zhilin; Mullany, Lisa K et al. (2016) Growth Arrest Specific-1 (GAS1) Is a C/EBP Target Gene That Functions in Ovulation and Corpus Luteum Formation in Mice. Biol Reprod 94:44
Oliver, Nora T; Hartman, Christine M; Kramer, Jennifer R et al. (2016) Statin drugs decrease progression to cirrhosis in HIV/HCV co-infected individuals. AIDS :
Aisiku, Imo P; Yamal, Jose-Miguel; Doshi, Pratik et al. (2016) Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit Care 20:288
Pethő, Zoltán; Tanner, Mark R; Tajhya, Rajeev B et al. (2016) Different expression of β subunits of the KCa1.1 channel by invasive and non-invasive human fibroblast-like synoviocytes. Arthritis Res Ther 18:103
Kwon, Oh-Joon; Zhang, Li; Xin, Li (2016) Stem Cell Antigen-1 Identifies a Distinct Androgen-Independent Murine Prostatic Luminal Cell Lineage with Bipotent Potential. Stem Cells 34:191-202

Showing the most recent 10 out of 683 publications