The goal of the Flow Cytometry Shared Resource to provide users with cost-effective instrumentation, expertise and training for cell sorting and analysis. This technology continues to develop at a rapid pace, especially with the advent of novel fluorescent reporters, increased computational capacity and more cost-effective optical equipment. To meet our members'increasing demands for state-of-the-art flow cytometry, the DLDCC and BCM administration collaborated to create an entirely new flow cytometry facility in 2007. Renovation, operating costs and instrumentation has been supported by $1.7 million in BCM institutional funds and >$600,000 in DLDCC funds. The revamped Facility is housed in newly renovated, centrally located space, which is available to trained users 24 h a day via key-card access. State-of-the-art instrumentation, all of which has been purchased in the last three years, includes two fully loaded florescence-activated cell sorters, three flow analyzers and a magnetic cell separator. The Resource is directed by Dr, Ellen A. Lumpkin, who has over nine years of experience in flow cytometry, and Mr. Joel Sederstrom, who was recruited from the Univ. of Minnesota's Cancer Center Flow Cytometry Core in a national search. To ensure optimal use of services, the Resource provides consultations, training and protocols for sample preparation, flow analysis and cell sorting. The Resource is also staffed with two full-time experienced flow cytometrists who perform operator-assisted cytometry, and assist users with data analysis. With the Resource's improved services and capacity, FACS sorting has increased by >500% and FACS analysis has increased 160% among Cancer Center members. At present, the Resource operates near 100% of its capacity, with 78% of usage occupied by 65 Cancer Center investigators whose membership spans all Scientific Programs. Future plans include further expanding services by recruiting an additional cytometrist and by including a second site at our affiliated institution, Texas Children's Hospital Cancer Center.

Public Health Relevance

Flow cytometry is essential for Cancer Center members, who rely on this technology to elucidate mechanisms of tumor suppressor and oncogenes, cell-cycle progression, transforming viruses and to evaluate currently prescribed cancer therapies. Flow cytometry is also integral to studies of cancer stem cells, angiogenesis, transcriptional regulation in tumor cells and mechanisms of DNA break and repair.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
United States
Zip Code
Addison, Joseph B; Koontz, Colton; Fugett, James H et al. (2015) KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 75:344-55
Torbit, Lindsey A; Albiani, Jenna J; Crangle, Cassandra J et al. (2015) Fear of recurrence: the importance of self-efficacy and satisfaction with care in gay men with prostate cancer. Psychooncology 24:691-8
Thrift, Aaron P; Garcia, Jose M; El-Serag, Hashem B (2014) A multibiomarker risk score helps predict risk for Barrett's esophagus. Clin Gastroenterol Hepatol 12:1267-71
Bhattacharya, Abhisek; Parillon, Xyanthine; Zeng, Shenyan et al. (2014) Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 289:26525-32
Ramasamy, Ranjith; Ridgeway, Alex; Lipshultz, Larry I et al. (2014) Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 102:968-973.e3
Kowalkowski, Marc A; Day, Rena S; Du, Xianglin L et al. (2014) Cumulative HIV viremia and non-AIDS-defining malignancies among a sample of HIV-infected male veterans. J Acquir Immune Defic Syndr 67:204-11
Geldres, Claudia; Savoldo, Barbara; Hoyos, Valentina et al. (2014) T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res 20:962-71
Young, Evelin; Zheng, Ze-Yi; Wilkins, Angela D et al. (2014) Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol 34:374-85
Anurathapan, Usanarat; Leen, Ann M; Brenner, Malcolm K et al. (2014) Engineered T cells for cancer treatment. Cytotherapy 16:713-33
Thrift, Aaron P; Kramer, Jennifer R; Alsarraj, Abeer et al. (2014) Fat mass by bioelectrical impedance analysis is not associated with increased risk of Barrett esophagus. J Clin Gastroenterol 48:218-23

Showing the most recent 10 out of 272 publications