The goals of the Cancer Cell and Gene Therapy (CCGT) Program are to incorporate advances in cellular and gene therapy into the treatment of cancer. The Cancer Center Program is a sub-component of the Center for Cell and Gene Therapy and has 18 research members from a multiple Departments at Baylor, including Medicine, Pediatrics, Pathology, Immunology and Molecular and Human Genetics. The program had a total of $6,315,268 support from the NCI last year and overall received $18,522,146 in peer reviewed funding. Members of the program published over 180 cancer related manuscripts in peer-reviewed journals of which 51% represented intraprogrammatic collaborations and 30% interprogrammatic. Our research focuses on normal and malignant stem cells, adoptive immunotherapy of cancer and on improving outcomes of stem cell transplantation for cancer. CCGT has basic, translational and clinical research components. Our basic investigators work on understanding the mechanisms by which normal and malignant stem cell growth is controlled, and on the molecular and cellular interactions involved in development of tumor vasculature and stroma. These researchers are also identifying new targets for immunotherapy, and optimizing presentation of weak tumor antigens to the immune system. Our translational investigators are moving cell and gene based therapies from the bench to the bedside in a series of small-scale iterative laboratory-clinical- laboratory protocols, and are also developing pivotal trials. We have a decade-long history of successful and timely implementation of clinical translational projects in gene and cellular therapy, and we have the resources to supply and test all the clinical reagents required, since our center is one of three national NHLBl-funded Production Assistance for Cellular Therapy centers. Major accomplishments include the demonstration of activity of virus specific cytotoxic T lymphocytes in virus-associated cancers (resulting in an orphan drug designation for EBV CTLs for post transplant lymphoma) and studies showing the antitumor activity of genetically modified T cells in subjects with neuroblastoma and lymphoma. Our clinical researchers run the adult and (in collaboration with the Pediatric Oncology program) pediatric hemopoietic stem cell transplant programs and are extending the applicability of transplantation for malignancy by using monoclonal antibodies in subablative conditioning regimens and using post transplant immunotherapy to reduce GVHD whilst augmenting graft versus tumor activity and reconstituting anti-viral immunity.

Public Health Relevance

This program consists of basic scientists and clinicians who focus their research efforts on stem cell biology and cancer stem cells, adoptive immunotherapy of cancer and improving the outcome of stem cell transplantation for cancer. Their collaborations have led to studies showing activity of the immune system in treating cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-07
Application #
8515969
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
7
Fiscal Year
2013
Total Cost
$57,350
Indirect Cost
$46,522
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Addison, Joseph B; Koontz, Colton; Fugett, James H et al. (2015) KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res 75:344-55
Torbit, Lindsey A; Albiani, Jenna J; Crangle, Cassandra J et al. (2015) Fear of recurrence: the importance of self-efficacy and satisfaction with care in gay men with prostate cancer. Psychooncology 24:691-8
Thrift, Aaron P; Garcia, Jose M; El-Serag, Hashem B (2014) A multibiomarker risk score helps predict risk for Barrett's esophagus. Clin Gastroenterol Hepatol 12:1267-71
Bhattacharya, Abhisek; Parillon, Xyanthine; Zeng, Shenyan et al. (2014) Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 289:26525-32
Ramasamy, Ranjith; Ridgeway, Alex; Lipshultz, Larry I et al. (2014) Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 102:968-973.e3
Kowalkowski, Marc A; Day, Rena S; Du, Xianglin L et al. (2014) Cumulative HIV viremia and non-AIDS-defining malignancies among a sample of HIV-infected male veterans. J Acquir Immune Defic Syndr 67:204-11
Geldres, Claudia; Savoldo, Barbara; Hoyos, Valentina et al. (2014) T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res 20:962-71
Young, Evelin; Zheng, Ze-Yi; Wilkins, Angela D et al. (2014) Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol 34:374-85
Anurathapan, Usanarat; Leen, Ann M; Brenner, Malcolm K et al. (2014) Engineered T cells for cancer treatment. Cytotherapy 16:713-33
Thrift, Aaron P; Kramer, Jennifer R; Alsarraj, Abeer et al. (2014) Fat mass by bioelectrical impedance analysis is not associated with increased risk of Barrett esophagus. J Clin Gastroenterol 48:218-23

Showing the most recent 10 out of 272 publications