The Viral and Molecular Oncogenesis (VMO) Research Program consists of investigators who are conducting fundamental research on the molecular basis of cancer development. The program has three thematic areas: (1) Chromosomes and mitotic regulation, (2) Oncogenic signaling, and (3) Viral oncogenesis. The program consists of 36 primary members from 10 academic departments;27 of 28 (96%) of the research members are funded. Peer-reviewed grant funds total nearly $16.0 million annually, with $3.8 million from the National Cancer Institute. Twenty-nine secondary members also participate in the VMO Program. Since its initial review, the program has built on its strengths and improved in areas of weakness. The program was reorganized around themes that better reflect member strengths, encouraged new collaborations by targeted use of pilot grant funds, and organized joint retreats. Members of the program published 187 cancer-related manuscripts in peer-reviewed journals;of these 20% represented intraprogrammatic collaborations (an increase from 3%) and 31% were interprogrammatic. Translational research efforts saw a novel Stat3 inhibitor moving toward clinical trial. A new initiative in the area of HIV-associated malignancies has been undertaken;it draws on our strengths in virology, addresses an emerging area of need, has translational opportunities, and involves a collaboration between the Cancer Center and the Center for AIDS Research. The program leaders are Janet S. Butel, Ph.D. and William R. Brinkley, Ph.D.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-08
Application #
8690543
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Badr, Hoda; Herbert, Krista; Bonnen, Mark D et al. (2018) Dyadic Coping in Patients Undergoing Radiotherapy for Head and Neck Cancer and Their Spouses. Front Psychol 9:1780
Morita, Daisuke; Nishio, Nobuhiro; Saito, Shoji et al. (2018) Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol Ther Methods Clin Dev 8:131-140
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey et al. (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6:34
Ballester, Leomar Y; Lu, Guangrong; Zorofchian, Soheil et al. (2018) Analysis of cerebrospinal fluid metabolites in patients with primary or metastatic central nervous system tumors. Acta Neuropathol Commun 6:85
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139
Gates, Leah A; Gu, Guowei; Chen, Yue et al. (2018) Proteomic profiling identifies key coactivators utilized by mutant ER? proteins as potential new therapeutic targets. Oncogene 37:4581-4598
Dasgupta, Subhamoy; Rajapakshe, Kimal; Zhu, Bokai et al. (2018) Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature 556:249-254
Qin, Liying; Sankaran, Banumathi; Aminzai, Sahar et al. (2018) Structural basis for selective inhibition of human PKG I? by the balanol-like compound N46. J Biol Chem 293:10985-10992
Shi, Xiangguo; Kitano, Ayumi; Jiang, Yajian et al. (2018) Clonal expansion and myeloid leukemia progression modeled by multiplex gene editing of murine hematopoietic progenitor cells. Exp Hematol 64:33-44.e5
Disney-Hogg, Linden; Cornish, Alex J; Sud, Amit et al. (2018) Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC Med 16:42

Showing the most recent 10 out of 991 publications