Genetic screens have been a powerful approach for defining signaling and developmental pathways in model organisms, but historically have not been exploited in mammalian cancer biology because of a lack of systematic tools. Recent advances in RNA interference (RNAi) have begun to facilitate such approaches, and these genetic tools have become essential components of basic and translational cancer biology. The Genome-wide RNAi Screening and Analysis (GRSA) Shared Resource was established through philanthropic and institutional support in 2008 to facilitate investigators in their use of new RNAi technologies and genetic screening methods. The Shared Resource is directed by Drs. Thomas Westbrook and Dan Liu who have extensive expertise in developing genetic technologies (e.g. RNAi libraries) and in mammalian genetic screening methods. Combined with this expertise, the GRSA provides all essential elements for single-gene analyses to whole-genome genetic screens including genome-wide short-hairpin RNA (shRNA) libraries, multiple automated robotic platforms for library manipulation, high-throughput analyzers for phenotypic analysis, and data processing infrastructure for mammalian genetic screens, making this DLDCC Shared Resource unique among NCI Cancer Centers. Specific services provided by the Shared Resource include (1) performing whole-genome or sub-genome scale RNAi screens, (2) utilizing individual lentivirus-based shRNA vectors, (3) large-scale automated manipulation and preparation of shRNA libraries, (4) automated mammalian cell transfection and lentivirus production, (5) high-throughput cell-based assays using automated microscopy or flow cytometry, and (6) data analysis, storage, and management. By housing these resources in a single, cohesive Shared Resource, the GRSA enables investigators to employ genetic approaches that are often cost- and labor-prohibitive or simply not feasible for individual laboratories. In the current application, the GRSA is proposed as a new Shared Resource for the DLDCC grant application.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA125123-08
Application #
8690555
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Kundu, Samrat T; Grzeskowiak, Caitlin L; Fradette, Jared J et al. (2018) TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 9:2731
Kim, Myunghoo; Galan, Carolina; Hill, Andrea A et al. (2018) Critical Role for the Microbiota in CX3CR1+ Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses. Immunity 49:151-163.e5
Mamonkin, Maksim; Mukherjee, Malini; Srinivasan, Madhuwanti et al. (2018) Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 6:47-58
Morriss, Ginny R; Rajapakshe, Kimal; Huang, Shixia et al. (2018) Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1. Hum Mol Genet 27:2789-2804
Lanza, Denise G; Gaspero, Angelina; Lorenzo, Isabel et al. (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69
Jeong, Mira; Park, Hyun Jung; Celik, Hamza et al. (2018) Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo. Cell Rep 23:1-10
Boudreaux, Seth P; Duren, Ryan P; Call, Steven G et al. (2018) Drug targeting of NR4A nuclear receptors for treatment of acute myeloid leukemia. Leukemia :
Sukumaran, Sujita; Watanabe, Norihiro; Bajgain, Pradip et al. (2018) Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 8:972-987
Kaochar, Salma; Mitsiades, Nicholas (2018) A Novel Mechanism to Drive Castration-Resistant Prostate Cancer. Trends Endocrinol Metab 29:366-368
Johnston, A N; Bu, W; Hein, S et al. (2018) Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res 20:42

Showing the most recent 10 out of 991 publications