There is increasing evidence that oxidative damage and free radicals, with sequelae of altered cellular energetics and protein alterations, are important in the initiation, promotion, invasion, metastasis, and treatment of cancers. Moreover, oxidative damage and free radicals also are implicated in the side effects of normal tissue injury following cancer therapy, including chemotherapy, radiafion, and biological modifiers. The Free Radical Biology in Cancer Shared Resource Facility (FRBC SRF) was established to provide expertise in and analyses of free radicals, cellular energetics, and reactive species, as well as proteomics in cancer and cancer biology for Markey Cancer Center (MCC) investigators who perform basic, pre-clinical, and clinical research. The four basic services provided by the FRBC SRF are: 1) Analysis of markers of oxidative and nitrosative stress;2) Molecular biological manipulation of biological systems with which to investigate redox signals, including measurements of mitochondrial function by Seahorse technology;3) Proteomics identification of differentially expressed, differentially oxidized, or differentially covalently modified proteins in various cancer-related systems;4) Electron paramagnetic resonance (EPR) detection of free radicals. Development of new applications and methodology for better understanding of the roles of free radicals in cancer and cancer chemotherapy and technical assistance with grant and manuscript preparation by MCC investigators will also be provided. Included in these functions of the considerable expertise of the FRBC SRF Technical Advisory Committee to educate MCC investigators on proper sample handling and preparation methods so that reliable, precise, and artifact-free assay results are obtained. Multiple investigators from all four research programs of the MCC (Redox Injury and Repair [RR];Cancer Cell Biology and Signaling [CS];Cancer Prevention and Control [CP];and Drug Discovery, Delivery and Translational Therapeutics [DT]) have used one or more services of the FRBC SRF. Indeed, even as a relatively new shared resource, the FRBC SRF still had usage by 26% of MCC investigators.

Public Health Relevance

Damaging free radicals are produced by cancers and with various cancer treatments. When cells are damaged, evidence of free radical-induced oxidative or nitrosative stress becomes apparent. The Free Radical Biology in Cancer Shared Resource Facility addresses these issues for members of the MCC by determining markers of oxidative stress, measuring oxidative stress-mediated mitochondrial dysfunction using Seahorse technology, and identifying aberrant cellular proteins using proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA177558-02
Application #
8740637
Study Section
Subcommittee B - Comprehensiveness (NCI)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
City
Lexington
State
KY
Country
United States
Zip Code
40506
Rea, Matthew; Gripshover, Tyler; Fondufe-Mittendorf, Yvonne (2018) Selective inhibition of CTCF binding by iAs directs TET-mediated reprogramming of 5-hydroxymethylation patterns in iAs-transformed cells. Toxicol Appl Pharmacol 338:124-133
Yarana, Chontida; Carroll, Dustin; Chen, Jing et al. (2018) Extracellular Vesicles Released by Cardiomyocytes in a Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers of Early Cardiac Injury. Clin Cancer Res 24:1644-1653
Banerjee, Moumita; Cui, Xiaoyu; Li, Zhichuan et al. (2018) Na/K-ATPase Y260 Phosphorylation-mediated Src Regulation in Control of Aerobic Glycolysis and Tumor Growth. Sci Rep 8:12322
Ji, Xuemei; Bossé, Yohan; Landi, Maria Teresa et al. (2018) Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nat Commun 9:3221
McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S et al. (2018) Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood 131:2943-2954
Jones, Derek; Bopaiah, Jeevith; Alghamedy, Fatemah et al. (2018) Polypharmacology Within the Full Kinome: a Machine Learning Approach. AMIA Jt Summits Transl Sci Proc 2017:98-107
Crooks, Daniel R; Maio, Nunziata; Lane, Andrew N et al. (2018) Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 293:8297-8311
Zhang, Yi; Liu, Xinan; MacLeod, James et al. (2018) Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach. BMC Genomics 19:971
Liu, Jinpeng; Murali, Thilakam; Yu, Tianxin et al. (2018) Characterization of Squamous Cell Lung Cancers from Appalachian Kentucky. Cancer Epidemiol Biomarkers Prev :
Ore, Robert M; Chen, Quan; DeSimone, Christopher P et al. (2018) Population-Based Analysis of Patient Age and Other Disparities in the Treatment of Ovarian Cancer in Central Appalachia and Kentucky. South Med J 111:333-341

Showing the most recent 10 out of 359 publications