Neuronal nicotinic cholinergic receptors are expressed throughout the brain, in the spinal cord, and in the autonomic ganglia. Eleven neuronal nAChR subunit genes were cloned and sequenced in the 1980's. Some of these subunits closely resemble the a1 subunit that is included in the nAChR that is expressed at the neuromuscular junction (the so-called peripheral-type receptor). These a1-like subunits are called: a2, a3...a10 and, with the exception of a5, provide the binding site for nicotine and other nicotinic agonists. The three remaining subunits, ?2-?4, are referred to as structural subunits. Enormous progress has been made towards understanding the structure and function of neuronal nAChRs using expression systems (cell lines, Xenopus laevis oocytes). For example, expression system studies have shown that subunit composition has profound effects on biophysical and pharmacological properties. The value of expression system studies has been limited, somewhat, because some of the more interesting subunits (e.g. a6, ?3) are not easily expressed in artificial systems. These, and other concerns, have prompted researchers to develop gene knockout (null mutant) mice for virtually every one of the known nAChR subunits. Transgenic mice have also been developed that express several gain of function mutations, or mutations that are associated with human diseases. These transgenic mice are being used to address questions such as: 1) What are the subunit compositions of naturally-occurring (i.e. native) nAChRs? 2) Where are these native receptors expressed? 3) What role do they play in modulating brain function (behavior?), and 4) What function do these receptors play in modulating addiction to nicotine, alcohol and other drugs? We have the world's most complete collection of nAChR mutant mice that are being used in several funded research projects that are centered at the University of Colorado. During the last 4 years we have built our colony from five mutant strains to 18 and have established a system where we have sent mice and/or breeding pairs to other researchers in the US and, more recently around the world (3 continents, to date). This application requests funds to support the continued maintenance and distribution of these mouse stocks.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Center Core Grants (P30)
Project #
3P30DA015663-10S1
Application #
8684741
Study Section
Special Emphasis Panel (ZDA1-RXL-E (02))
Program Officer
Pollock, Jonathan D
Project Start
2003-05-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2014-04-30
Support Year
10
Fiscal Year
2013
Total Cost
$416,929
Indirect Cost
$143,533
Name
University of Colorado at Boulder
Department
Genetics
Type
Other Domestic Higher Education
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Pistillo, Francesco; Fasoli, Francesca; Moretti, Milena et al. (2016) Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacol Res 103:167-76
McClure-Begley, Tristan D; Esterlis, Irina; Stone, Kathryn L et al. (2016) Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex. eNeuro 3:
Kamens, Helen M; Miyamoto, Jill; Powers, Matthew S et al. (2015) The β3 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology 99:639-49
Sanjakdar, Sarah S; Maldoon, Pretal P; Marks, Michael J et al. (2015) Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacology 40:350-60
Stoker, Astrid K; Marks, Michael J; Markou, Athina (2015) Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice. Eur J Pharmacol 753:146-50
Wilking, Jennifer A; Stitzel, Jerry A (2015) Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds. Neuropharmacology 96:205-12
Carroll, F Ivy; Navarro, Hernán A; Mascarella, S Wayne et al. (2015) In vitro and in vivo neuronal nicotinic receptor properties of (+)- and (-)-pyrido[3,4]homotropane [(+)- and (-)-PHT]: (+)-PHT is a potent and selective full agonist at α6β2 containing neuronal nicotinic acetylcholine receptors. ACS Chem Neurosci 6:920-6
Marks, Michael J; O'Neill, Heidi C; Wynalda-Camozzi, Kelly M et al. (2015) Chronic treatment with varenicline changes expression of four nAChR binding sites in mice. Neuropharmacology 99:142-55
Meyers, Erin E; Loetz, Esteban C; Marks, Michael J (2015) Differential expression of the beta4 neuronal nicotinic receptor subunit affects tolerance development and nicotinic binding sites following chronic nicotine treatment. Pharmacol Biochem Behav 130:1-8
Sciaccaluga, Miriam; Moriconi, Claudia; Martinello, Katiuscia et al. (2015) Crucial role of nicotinic α5 subunit variants for Ca2+ fluxes in ventral midbrain neurons. FASEB J 29:3389-98

Showing the most recent 10 out of 80 publications