The goals of the Administrative Core are clearly distinct from those of the scientific cores. Its major tasks are to organize, support, and manage the UIUC Neuroproteomics Center on Cell-Cell Signaling. Primary activities include resource management, education and outreach, and datasharing oversight. The Administrative Core brings together the individual core Pis and the biological users with the Center's internal advisory committee and external advisory board. The first area described is the Center's organization and operational plans, with an emphasis on facilitating communication between Center personnel and the users. After all, the goal is to establish a logically interconnected neuroproteomics center and not simply to manage separate projects undertaken by individual investigators. Successful and continuing efforts to acquire and upgrade our measurement infrastructure are described. In addition, efforts in outreach and training, both for users of the Center and for the entire neuroscience and drug abuse research communities are highlighted. We also present an overview of the UIUC Center and the relationship between the cores. Several neuroproteomics centers were initiated four years ago by NIDA with the stated goals to provide neurobiologists with the ability to (1) benefit from proteomics experiments, (2) build a cadre of proteomics experts who will develop expertise in analyzing neural samples, and (3) develop and improve existing technologies as they relate to neurobiology. The Administrative Core is the cohesive force that binds all three of these efforts in the UIUC Neuroproteomics Center on Cell-Cell Signaling.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-RXL-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
United States
Zip Code
Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S et al. (2016) A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Sci Rep 6:26940
Hu, Caroline K; Southey, Bruce R; Romanova, Elena V et al. (2016) Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 17:660
Durbin, Kenneth R; Fornelli, Luca; Fellers, Ryan T et al. (2016) Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J Proteome Res 15:976-82
Southey, Bruce R; Zhu, Ping; Carr-Markell, Morgan K et al. (2016) Characterization of Genomic Variants Associated with Scout and Recruit Behavioral Castes in Honey Bees Using Whole-Genome Sequencing. PLoS One 11:e0146430
Wu, Qian; Comi, Troy J; Li, Bin et al. (2016) On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues. Anal Chem 88:5988-95
Gonzalez-Pena, Dianelys; Nixon, Scott E; O'Connor, Jason C et al. (2016) Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS One 11:e0150858
Jansson, Erik T; Comi, Troy J; Rubakhin, Stanislav S et al. (2016) Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chem Biol 11:2588-95
Savaryn, John Paul; Skinner, Owen S; Fornelli, Luca et al. (2016) Targeted analysis of recombinant NF kappa B (RelA/p65) by denaturing and native top down mass spectrometry. J Proteomics 134:76-84
Ong, Ta-Hsuan; Romanova, Elena V; Roberts-Galbraith, Rachel H et al. (2016) Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. J Biol Chem 291:8109-20
Livnat, Itamar; Tai, Hua-Chia; Jansson, Erik T et al. (2016) A d-Amino Acid-Containing Neuropeptide Discovery Funnel. Anal Chem 88:11868-11876

Showing the most recent 10 out of 186 publications