The Bioanalytical Core Laboratory will provide state of the art and innovative bioanalytical expertise and techniques for the quantification of drugs and their metabolites, endogenous chemicals and other molecules of biological significance in new collaborative studies with the other cores in the center and all the funded drug abuse biomedical researchers at this and neighboring universities. These analyses will provide the expertise to perform new and innovative research and to enhance currently funded research projects in ways not anticipated at the time of their application submission. This core will accomplish these goals by making available reliable, validated mass spectrometric analysis of biological and non-biological materials for new projects as well as for NIDA sponsored and other researchers studying the mechanism of action of abused substances and addiction. The laboratory will develope methods will focus on the identification and quantification in biologic specimens of drugs and/or drug metabolites, such as cocaine, nicotine, cotinine, tetrahydrocannabinol (THC), JWH-018, JWH-073, CP 47,497, methadrone and methylene, as well as physiologically active small endogenous molecules and/or their metabolites such as anandamide, other endocannabinoids, prostamides and ceramide metabolites of sphingomelingolipids. These analyses will enhance the pharmacological studies of drugs of abuse by providing pharmacokinetic analysis including drug disposition, metabolism and clearance. The Bioanalytical Core will develop novel and innovative techniques for minimum sample preparation to allow rapid isolation and quantification of polar drug metabolites and glucuronide metabolites. If funded, it will develop a research program concerning micro sample preparation techniques such as ambient surface sampling by liquid microjunction surface sampling probe (LMJ-SSP), for MS detection and quantification of drugs or other small molecules in animal tissues and slices. This will allow the detection of drugs/metabolites in specific anatomical areas identified by imaging techniques. We further propose to enhance MSL capabilities to detect analytes at very low concentrations in biological specimens by the addition of micro sampling techniques combined with highly selective and sensitive MS instrumentation such as time of flight (TOF) detectors. Such MS systems decrease the lower limits of detection and improve the quantification of drugs of abuse and their metabolites at very low concentrations in biological specimens. The ability to detect very low drug concentrations will extend the time period for collection specimens for disposition/pharmacokinetic evaluations. The Bioanalytical Core will also collaborate

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-EXL-T (02))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Virginia Commonwealth University
United States
Zip Code
Poklis, Justin L; Mohs, Amanda J; Wolf, Carl E et al. (2016) Identification of Drugs in Parenteral Pharmaceutical Preparations from a Quality Assurance and a Diversion Program by Direct Analysis in Real-Time AccuTOFTM-Mass Spectrometry (DART-MS). J Anal Toxicol 40:608-616
Poklis, Justin; Poklis, Alphonse; Wolf, Carl et al. (2016) Two Fatal Intoxications Involving Butyryl Fentanyl. J Anal Toxicol 40:703-708
Banks, Matthew L; Smith, Douglas A; Kisor, David F et al. (2016) Relationship between discriminative stimulus effects and plasma methamphetamine and amphetamine levels of intramuscular methamphetamine in male rhesus monkeys. Pharmacol Biochem Behav 141:58-65
Grim, T W; Morales, A J; Gonek, M M et al. (2016) Stratification of Cannabinoid 1 Receptor (CB1R) Agonist Efficacy: Manipulation of CB1R Density through Use of Transgenic Mice Reveals Congruence between In Vivo and In Vitro Assays. J Pharmacol Exp Ther 359:329-339
Wolf, Carl E; Poklis, Justin L; Cumpston, Kirk et al. (2016) Acute dilated cardiomyopathy and myocardial injury after combined 4-fluoroamphetamine and modafinil ingestion. Drug Test Anal :
Hutsell, Blake A; Baumann, Michael H; Partilla, John S et al. (2016) Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. Eur Neuropsychopharmacol 26:288-97
Mukhopadhyay, Partha; Baggelaar, Marc; Erdelyi, Katalin et al. (2016) The novel, orally available and peripherally restricted selective cannabinoid CB2 receptor agonist LEI-101 prevents cisplatin-induced nephrotoxicity. Br J Pharmacol 173:446-58
Xu, Changqing; Hermes, Douglas J; Mackie, Ken et al. (2016) Cannabinoids Occlude the HIV-1 Tat-Induced Decrease in GABAergic Neurotransmission in Prefrontal Cortex Slices. J Neuroimmune Pharmacol 11:316-31
Alajaji, Mai; Lazenka, Matthew F; Kota, Dena et al. (2016) Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology 105:308-17
Grim, Travis W; Samano, Kimberly L; Ignatowska-Jankowska, Bogna et al. (2016) Pharmacological characterization of repeated administration of the first generation abused synthetic cannabinoid CP47,497. J Basic Clin Physiol Pharmacol 27:217-28

Showing the most recent 10 out of 63 publications