The objective of this Core is to provide expert advice from the talented team of co-investigators, necessary training, and the infrastructure to utilize molecular biological approaches to create genetically engineered mouse models that will increase the depth and breadth of existing drug abuse research and stimulate new research at Virginia Commonwealth University and throughout the scientific community. Additionally, it will provide a mechanism for scientists both within and outside of the drug abuse field to interact to develop new research projects. Specifically, this Core will provide investigators the necessary training, tools, and expertise to: 1) create novel genetically modified mice, not currently available through other sources;2) maintain mice in a repository in which available mouse lines will be bred, genotyped, and transferred to the investigator upon weaning;3) cryogenically preserve mouse lines for use in future studies;4) develop viral vectors to over-express, knock-down or deliver dominant negative forms of study genes chosen by collaborating investigators;and 5) deliver viral vectors stereotaxically into specific brain regions of interest and verify the extent of the manipulation. Overall this Core will provide new services to multiple investigators, with the goals of providing state-of-the-art molecular biological tools to investigate drugs of abuse, facilitate collaborations, and provide value to drug abuse researchers.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Center Core Grants (P30)
Project #
1P30DA033934-01A1
Application #
8577249
Study Section
Special Emphasis Panel (ZDA1-EXL-T (02))
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
1
Fiscal Year
2014
Total Cost
$152,394
Indirect Cost
$50,880
Name
Virginia Commonwealth University
Department
Type
DUNS #
105300446
City
Richmond
State
VA
Country
United States
Zip Code
23298
Kang, Minho; Mischel, Ryan A; Bhave, Sukhada et al. (2017) The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep 7:42658
Jacob, Joanna C; Poklis, Justin L; Akbarali, Hamid I et al. (2017) Ethanol Reversal of Tolerance to the Antinociceptive Effects of Oxycodone and Hydrocodone. J Pharmacol Exp Ther 362:45-52
Dempsey, Sara K; Poklis, Justin L; Sweat, Kacie et al. (2017) Acute Toxicity From Intravenous Use of the Tricyclic Antidepressant Tianeptine. J Anal Toxicol 41:547-550
Gonek, Maciej; McLane, Virginia D; Stevens, David L et al. (2017) CCR5 mediates HIV-1 Tat-induced neuroinflammation and influences morphine tolerance, dependence, and reward. Brain Behav Immun :
Li, Guangbi; Chen, Zhida; Bhat, Owais M et al. (2017) NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. J Lipid Res 58:1080-1090
Wolf, Carl E; Poklis, Justin L; Cumpston, Kirk et al. (2017) Acute dilated cardiomyopathy and myocardial injury after combined 4-fluoroamphetamine and modafinil ingestion. Drug Test Anal 9:657-659
Shin, Myungsun; Snyder, Helena W; Donvito, Giulia et al. (2017) Liposomal Delivery of Diacylglycerol Lipase-Beta Inhibitors to Macrophages Dramatically Enhances Selectivity and Efficacy in Vivo. Mol Pharm :
Wolf, Carl E; Poklis, Justin L; Poklis, Alphonse (2017) Stability of Tetrahydrocannabinol and Cannabidiol in Prepared Quality Control Medible Brownies. J Anal Toxicol 41:153-157
Poklis, Justin L; Wolf 2nd, Carl E; Peace, Michelle R (2017) Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID). Drug Test Anal 9:1637-1640
Akbarali, Hamid I; Dewey, William L (2017) The gut-brain interaction in opioid tolerance. Curr Opin Pharmacol 37:126-130

Showing the most recent 10 out of 87 publications