The long-term objective of the Human Subject Recruitment Research Core is to provide investigators whose research interests fall within the mission areas of NIDCD with the subjects they need to complete their studies efficiently and cost effectively. Specifically, the proposed Research Core supports the Communication Sciences Participant Pool to provide to investigators at the University of Washington the names of potential subjects (infants to the elderly) with normal and disordered hearing, balance, voice, speech, and language. By making the process of recruiting subjects more efficient for investigators, research productivity is increased. In addition, collaborations among investigators are encouraged because it is easy to identify the studies in which subjects have been tested and to find subjects who are interested in participating in collaborative efforts. Finally, the Communication Sciences Subject Pool encourages investigators who have avoided becoming involved in research on special populations, such as individuals with communication disorders, because of the difficulties involved in subject recruitment, to pursue their interests in this field of research. Specific goals for the proposed grant period include improving electronic access to participant information, implementation of new clinical recruiting procedures, and expansion of efforts in minority recruitment.

Public Health Relevance

Increasing the efficiency and efficacy of research on hearing, communication and balance will help, in the short term, bring new therapies to the bedside. In the long term, better understanding of the basic normal operation of the organs and systems underlying these functions, as well as the processes leading to disorders, is likely to lead to better prevention and treatment of such disorders and to improved human health

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC004661-14
Application #
8526211
Study Section
Special Emphasis Panel (ZDC1-SRB-Q)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
14
Fiscal Year
2013
Total Cost
$124,340
Indirect Cost
$44,635
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Street, Valerie A; Kujawa, Sharon G; Manichaikul, Ani et al. (2014) Resistance to noise-induced hearing loss in 129S6 and MOLF mice: identification of independent, overlapping, and interacting chromosomal regions. J Assoc Res Otolaryngol 15:721-38
Shim, Hyun Joon; Won, Jong Ho; Moon, Il Joon et al. (2014) Can unaided non-linguistic measures predict cochlear implant candidacy? Otol Neurotol 35:1345-53
Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian et al. (2014) Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded. J Assoc Res Otolaryngol 15:423-39
Stawicki, Tamara M; Owens, Kelly N; Linbo, Tor et al. (2014) The zebrafish merovingian mutant reveals a role for pH regulation in hair cell toxicity and function. Dis Model Mech 7:847-56
Lau, Bonnie K; Werner, Lynne A (2014) Perception of the pitch of unresolved harmonics by 3- and 7-month-old human infants. J Acoust Soc Am 136:760-7
Baltzell, Lucas S; Billings, Curtis J (2014) Sensitivity of offset and onset cortical auditory evoked potentials to signals in noise. Clin Neurophysiol 125:370-80
Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui et al. (2014) Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol 522:3141-59
Esterberg, Robert; Hailey, Dale W; Rubel, Edwin W et al. (2014) ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci 34:9703-19
Seidl, Armin H; Rubel, Edwin W; Barría, Andrés (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914-9
Wang, Yuan; Sakano, Hitomi; Beebe, Karisa et al. (2014) Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 522:2107-28

Showing the most recent 10 out of 221 publications