A. Abstract and Key Personnel The Histology-Surgery Core provides the intellectual and physical environment in which Center Investigators, their trainees and support staff can learn and perform a variety of surgical and histological procedures. The Core will 1) Aims 1A, 2A: maintain existing shared facilities for animal surgery and histological processing, 2) Aims IB, 2B: provide technical expertise and training in surgical techniques (both acute and chronic) and histological techniques for tissue processing of both peripheral and central auditory structures at the light- and electron-microscopic levels, 3) Aim 2D: continue to research and promulgate improvements and refinements to histological and surgical methods, and 4) Aim IE: assist with mouse husbandry in maintaining and propagating mutant lines. Some complex surgical techniques, such as preparation of the anesthetized cat for neurophysiological study, will be routinely offered as a technical service (Aims 1C, 1D). Some histological processing will be performed as a technical service, but only when task complexity and limited project scope make it inefficient to train the relevant group (Aim 2C). Facility maintenance will include 1) ordering of supplies, 2) preparation of stock solutions, 3) equipment repair, and 4) compliance with local and federal regulations. All research groups in the Center will benefit by the time saved in not duplicating these basic services. All investigators will also benefit from the repository of experience and expert advice the Core represents. First, significant time will be saved by offloading to Core personnel the training of new students and new investigator-specific support staff. Second, Core expertise will enhance the research of all participants by 1) facilitating the incorporation of new techniques, 3) promulgating to the entire Center any technical advances developed by participating laboratories, and 3) allowing Center investigators to use a wide range of techniques, each on a phasic basis, without having to maintain all the requisite skills within their own group. The Histology-Surgery Core is staffed by experienced individuals, with demonstrated expertise in all relevant areas, including animal surgery, immunohistochemistry and a wide range of embedding and staining techniques for light- and electron-microscopic evaluation of peripheral and central auditory structures.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1-SRB-Y (58))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Eye and Ear Infirmary
United States
Zip Code
Street, Valerie A; Kujawa, Sharon G; Manichaikul, Ani et al. (2014) Resistance to noise-induced hearing loss in 129S6 and MOLF mice: identification of independent, overlapping, and interacting chromosomal regions. J Assoc Res Otolaryngol 15:721-38
Brugeaud, Aurore; Tong, Mingjie; Luo, Li et al. (2014) Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Dev Neurobiol 74:457-66
Parker, Mark A; Cheng, Yen-fu; Kinouchi, Hikaru et al. (2014) An independent construct for conditional expression of atonal homolog-1. Hum Gene Ther Methods 25:1-13
Yin, Yanbo; Liberman, Leslie D; Maison, Stéphane F et al. (2014) Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology. J Assoc Res Otolaryngol 15:571-83
Liberman, M Charles; Liberman, Leslie D; Maison, Stéphane F (2014) Efferent feedback slows cochlear aging. J Neurosci 34:4599-607
Shi, Fuxin; Hu, Lingxiang; Jacques, Bonnie E et al. (2014) ?-Catenin is required for hair-cell differentiation in the cochlea. J Neurosci 34:6470-9
Wang, Le; Devore, Sasha; Delgutte, Bertrand et al. (2014) Dual sensitivity of inferior colliculus neurons to ITD in the envelopes of high-frequency sounds: experimental and modeling study. J Neurophysiol 111:164-81
Chung, Yoojin; Hancock, Kenneth E; Nam, Sung-Il et al. (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218-31
Wan, Guoqiang; Gómez-Casati, Maria E; Gigliello, Angelica R et al. (2014) Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife 3:
Chambers, Anna R; Hancock, Kenneth E; Sen, Kamal et al. (2014) Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons. J Neurosci 34:8963-75

Showing the most recent 10 out of 97 publications