The Increase in powerful molecular and genetic tools for Investigation of gene function in the laboratory mouse has greatly increased Interest in this animal as a model for auditory and vestibular research. Although the interpretation of experiments exploiting mice with genetic alterations is not always straightforward, the ability to examine the consequences of modification of a single gene has tremendous implications for molecular investigation of the inner ear. The overall goal of the Mouse Core Is to enable Investigators In the Core Center to carry out experiments with mice, and in particular with genetically modified mice. This ability should enhance present research projects and lead to new experimental approaches, particularly involving collaborations among several Investigators. To provide expertise and services to the Core Center for mouse molecular genetics studies, three specific aims are proposed: 1. To provide mouse husbandry services and training, 2. To provide genotyping services and training, and 3. To provide in utero gene transfer resources. Our service approach is to centralize these activities in a single facility. The model allows individual investigators to focus on their specific research projects while enjoying a more cost-effective model for the use of mice in their NIDCD-funded research programs.

Public Health Relevance

This P30 Core Center supports 20 Investigators who carry out research into the basic and disease mechanisms of hearing, balance, and smell. The Mouse Core facilitates many of these research programs by offering support in raising mice and carrying out experiments where exogenous DNA is used to direct expression of proteins in a variety of cell types in both the central and peripheral auditory systems.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1-SRB-K (13))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
United States
Zip Code
Warren, Rebecca L; Ramamoorthy, Sripriya; Ciganović, Nikola et al. (2016) Minimal basilar membrane motion in low-frequency hearing. Proc Natl Acad Sci U S A 113:E4304-10
Ren, Tianying; He, Wenxuan; Barr-Gillespie, Peter G (2016) Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry. Nat Commun 7:10282
Chu, Yu-Hsuan; Sibrian-Vazquez, Martha; Escobedo, Jorge O et al. (2016) Systemic Delivery and Biodistribution of Cisplatin in Vivo. Mol Pharm 13:2677-82
Ebrahim, Seham; Avenarius, Matthew R; Grati, M'hamed et al. (2016) Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like. Nat Commun 7:10833
Fowler, Jennifer R; Eggleston, Jessica L; Reavis, Kelly M et al. (2016) Effects of Removing Low-Frequency Electric Information on Speech Perception With Bimodal Hearing. J Speech Lang Hear Res 59:99-109
Krey, Jocelyn F; Drummond, Meghan; Foster, Sarah et al. (2016) Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 6:27221
Reiss, Lina A J; Eggleston, Jessica L; Walker, Emily P et al. (2016) Two Ears Are Not Always Better than One: Mandatory Vowel Fusion Across Spectrally Mismatched Ears in Hearing-Impaired Listeners. J Assoc Res Otolaryngol 17:341-56
Chu, Yu-Hsuan; Escobedo, Jorge O; Jiang, Meiyan et al. (2016) Rhodamine analogues for molecular ruler applications. Dyes Pigm 126:46-53
Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa et al. (2016) Optogenetic Control of Mouse Outer Hair Cells. Biophys J 110:493-502
Zhang, Hongzheng; Stark, Gemaine; Reiss, Lina (2015) Changes in Gene Expression and Hearing Thresholds After Cochlear Implantation. Otol Neurotol 36:1157-65

Showing the most recent 10 out of 146 publications