The proposed Center for Molecular Auditory Neuroscience will enhance productivity, innovation, and collaborative interactions of auditory researchers at the University of Iowa. Center investigators are members of five clinical and basic science departments: Otolaryngology, Biology, Biochemistry, Physiology, and Communication Sciences and Disorders, with 15 auditory-related R01s, nine funded by NIDCD, a P50, two T32s, and other grants, for a total current year direct cost >$9M. There are extensive interactions among basic researchers, among clinical researchers, and interactions bridging clinical and basic research. The cores aim to strengthen these interactions and develop new ones. The Center consists of three research cores and will provide first-rate facilities for state-of-the-art experimental techniques crucial to molecular, cell, developmental and neurobiology of the inner ear;provide training in these techniques;make investigators aware of alternative experimental approaches and model systems that will facilitate their research;foster new collaborations that result in innovative approaches to problems in auditory research, including translation of basic research data to the clinic. The research cores are: (1) Histology and Imaging core to provide facilities and training for analysis of model organisms using light microscopy and EM: histology, including sectioning, staining, immunofluorescence, EM, and use of fluorescent dyes to label nerve fibers;confocal imaging, including multiphoton, of live or fixed tissue;(2) Genomics core for routine molecular biology techniques - sequencing, nucleotide synthesis, nucleic acid quantitation and quality - as well as analysis of gene expression;(3) Tissue/Cell Culture Core to provide facilities and training for preparation of in vitro cochlear model systems including sensory, neural and glial cells, organotypic inner ear cultures, and means for gene transfer into these cells. Individual experiments may use multiple cores and workflow will be coordinated among Core directors. The Administrative Core will manage day-to-day operation of the Center, coordinate activities of Core directors, and conduct symposia and seminars to facilitate interaction among the Center investigators.

Public Health Relevance

This P30 will support research interactions among a diverse group of investigators engaged in related questions of basic and clinical research: deafness genetics and gene therapy, inner ear development, sensorineural cell function and maintenance, cochlear implants. These are fundamental to prevention of deafness, optimization of current treatment of deafness, and to future cochlear sensorineural regeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC010362-03
Application #
8306269
Study Section
Special Emphasis Panel (ZDC1-SRB-Q (68))
Program Officer
Platt, Christopher
Project Start
2010-09-01
Project End
2015-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
3
Fiscal Year
2012
Total Cost
$399,978
Indirect Cost
$138,534
Name
University of Iowa
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Kay, Alan R; Raccuglia, Davide; Scholte, Jon et al. (2016) Goggatomy: A Method for Opening Small Cuticular Compartments in Arthropods for Physiological Experiments. Front Physiol 7:398
Eyo, Ukpong B; Miner, Samuel A; Weiner, Joshua A et al. (2016) Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus. Brain Behav Immun 55:49-59
Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo et al. (2016) NOVA2-mediated RNA regulation is required for axonal pathfinding during development. Elife 5:
Fritzsch, Bernd; Duncan, Jeremy S; Kersigo, Jennifer et al. (2016) Neuroanatomical Tracing Techniques in the Ear: History, State of the Art, and Future Developments. Methods Mol Biol 1427:243-62
Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F et al. (2016) The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. Elife 5:
Yang, Tian; Scholl, Elizabeth S; Pan, Ning et al. (2016) Expression and Localization of CaBP Ca2+ Binding Proteins in the Mouse Cochlea. PLoS One 11:e0147495
Elliott, Karen L; Houston, Douglas W; DeCook, Rhonda et al. (2015) Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. Dev Neurobiol 75:1339-51
Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike et al. (2015) Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing. Sci Rep 5:17085
Ahmad, Iram; Fernando, Augusta; Gurgel, Richard et al. (2015) Merlin status regulates p75(NTR) expression and apoptotic signaling in Schwann cells following nerve injury. Neurobiol Dis 82:114-22
Kopelovich, Jonathan C; Reiss, Lina A J; Etler, Christine P et al. (2015) Hearing Loss After Activation of Hearing Preservation Cochlear Implants Might Be Related to Afferent Cochlear Innervation Injury. Otol Neurotol 36:1035-44

Showing the most recent 10 out of 88 publications