The imaging core has four independent workstafions (Image Stafions 1-4), each incorporafing overlapping but independent imaging technologies. Three of four can be used for live cell imaging and two of four will have complementary electrophysiological recording stafions that allow the combinafion of powerful imaging and electrophysiological technologies. From an imaging perspective, the core facilities can accommodate multi-fluorophore immunocytochemical high-resolufion 3-dimensional imaging while also serving high speed physiological imaging. Addifionally, there are two dedicated computers with high end graphics boards, ample memory and processing power that can be used for image analysis offline from the imaging stafions. From conventional fluorescence and confocal imaging to high speed swept field confocal and two-photon imaging and uncaging, the core facility will serve to bring together ROI-funded invesfigators with a broad range of interests and expertise. The core will facilitate the use of this equipment so that translafional uses by the clinical faculty can be increased while at the same fime having the versafility to include users with common interests from mulfiple departments that share goals that are in agreement with the mission statement of the NIDCD. Clear examples of each of these uses exist already with the two-photon system being used to develop whole animal cochlea imaging that hopes to be ufilized in cochlear implant placements, while both the high speed swept field confocal system and the two photon system are presently being used to invesfigate synchronous firing in the cortex. This core grant proposal will allow us to expand the number of users and thus serve as a means to increase collaborafion across both basic science and clinical departments

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Center Core Grants (P30)
Project #
5P30DC010363-04
Application #
8382635
Study Section
Special Emphasis Panel (ZDC1-SRB-Q)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$271,249
Indirect Cost
$101,719
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Ealy, Megan; Ellwanger, Daniel C; Kosaric, Nina et al. (2016) Single-cell analysis delineates a trajectory toward the human early otic lineage. Proc Natl Acad Sci U S A 113:8508-13
Lee, Hee Yoon; Raphael, Patrick D; Xia, Anping et al. (2016) Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. J Neurosci 36:8160-73
Zeng, Wei-Zheng; Grillet, Nicolas; Dewey, James B et al. (2016) Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function. J Neurosci 36:9201-16
Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing et al. (2016) Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci 43:148-61
Sundaresan, S; Balasubbu, S; Mustapha, M (2016) Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea. Neuroscience 312:165-78
Xia, Anping; Liu, Xiaofang; Raphael, Patrick D et al. (2016) Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla. Nat Commun 7:13133
Kim, Sangmin; Raphael, Patrick D; Oghalai, John S et al. (2016) High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography. Biomed Opt Express 7:1430-44
Durruthy-Durruthy, Robert; Heller, Stefan (2015) Applications for single cell trajectory analysis in inner ear development and regeneration. Cell Tissue Res 361:49-57
Huth, Markus E; Han, Kyu-Hee; Sotoudeh, Kayvon et al. (2015) Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest 125:583-92
Lee, Hee Yoon; Raphael, Patrick D; Park, Jesung et al. (2015) Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Proc Natl Acad Sci U S A 112:3128-33

Showing the most recent 10 out of 55 publications