Existing and planned experimental work in several NIDCD ROI-funded laboratories requires sophlsficated measures of auditory function in small mammals. The breadth of these auditory funcfion measures ranges from simple high-throughput screening up to full comprehensive, frequency-specific measures concerning the middle ear, outer hair cell funcfion, and neural funcfion. These measures can be tailored for simple screening to frequency-specific threshold estimates. Measures of middle ear function will be added. The Core Auditory Function facility will ensure that these complex auditory measures are performed efficiently and accurately with the appropriate apparatus, under standardized, and calibrated condifions, and managed with a comprehensive database that stores, manages and retrieves individual and aggregate experimental auditory data. The Auditory Function Core consists of a Central Auditory Laboratory, three individual auditory measurement facilities, and a noise damaging facility, all in close proximity. The facilifies have convenfional apparatus and many custom components including high-frequency transducers for specific species. Roufine measures include distortion product otoacousfic emissions and frequency-specific auditory measures at the level ofthe brainstem tailored to the specific small mammals being measured, currently mice and guinea pigs. The three measurement stafions include sound and electrically shielded rooms, and specialized systems (Tucker Davis Technologies, Intelligent Hearing Systems) that include passive attenuators, filters, signal averaging algorithms, stimulus creation, etc. A fourth station will be used for generafing and controlling acousfic signals that are used for experimentally-controlled auditory damage. Our approach is to develop consistent, redundant, modular systems that provide all of these measures or subsets of these measures in a standardized, well-characterized manner;to plan for equipment and personnel redundancy so that no experiment would ever be compromised in the face ofthe usual transient breakdowns;and to develop a comprehensive server-based database so that every scientist can locate and download any result at any fime using a consistent interface.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1-SRB-Q)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Cox, Brandon C; Chai, Renjie; Lenoir, Anne et al. (2014) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141:816-29
Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya et al. (2014) A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 9:e94549
Ronaghi, Mohammad; Nasr, Marjan; Ealy, Megan et al. (2014) Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev 23:1275-84
Gao, Simon S; Wang, Rosalie; Raphael, Patrick D et al. (2014) Vibration of the organ of Corti within the cochlear apex in mice. J Neurophysiol 112:1192-204
Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas et al. (2014) Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear. Eur J Neurosci 39:1256-67
Durruthy-Durruthy, Robert; Gottlieb, Assaf; Hartman, Byron H et al. (2014) Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157:964-78
Aguilar, Andrea; Becker, Lars; Tedeschi, Thomas et al. (2014) ?-tubulin K40 acetylation is required for contact inhibition of proliferation and cell-substrate adhesion. Mol Biol Cell 25:1854-66
Guo, Zhaohua; Grimm, Christian; Becker, Lars et al. (2013) A novel ion channel formed by interaction of TRPML3 with TRPV5. PLoS One 8:e58174
Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T et al. (2013) Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proc Natl Acad Sci U S A 110:14456-61
Cao, Huiren; Yin, Xiaolei; Cao, Yujie et al. (2013) FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro. PLoS One 8:e56516

Showing the most recent 10 out of 28 publications