The Cellular and Molecular Imaging Core, which had its origin in 1977, has greafiy facilitated the research of Diabetes Research Center affiliates in the Seatfie area by keeping pace with and pioneering new methodological and technical advances in histochemistry, microscopic imaging and image analysis. The core will continue to promote the research of these invesfigators during the next funding cycle by: (1) Providing state-of-the-art facilifies and technical assistance for morphological and histochemical analyses;(2) Developing histochemical and quanfitative morphological methods and protocols;(3) Providing consultafion to affiliates, their postdoctoral fellows, graduate students and research personnel in the design and interpretation of morphological-based protocols for their diabetes-related research;(4) Providing hands-on and didacfic training to affiliates, their trainees and personnel in roufine and highly specialized morphological, histochemical, and imaging techniques;and (5) Providing access to comparative pathologists to assist with interpretafion of histopathology and data collected from animal models. By achieving these five goals, the Cellular and Molecular Imaging Core will support the scientific invesfigafion of affiliate invesfigators who will use the core to further our understanding of diabetes, obesity and related disorders.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-38
Application #
8635329
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$133,236
Indirect Cost
$27,493
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kursan, Shams; McMillen, Timothy S; Beesetty, Pavani et al. (2017) The neuronal K+Cl- co-transporter 2 (Slc12a5) modulates insulin secretion. Sci Rep 7:1732
Lee, Crystal Man Ying; Woodward, Mark; Pandeya, Nirmala et al. (2017) Comparison of relationships between four common anthropometric measures and incident diabetes. Diabetes Res Clin Pract 132:36-44
Han, Seung Jin; Boyko, Edward J; Fujimoto, Wilfred Y et al. (2017) Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance. J Clin Endocrinol Metab 102:4626-4633
Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela et al. (2017) Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity. Arterioscler Thromb Vasc Biol 37:466-475
Kanter, Jenny E (2017) Monocyte Recruitment Versus Macrophage Proliferation in Atherosclerosis. Circ Res 121:1109-1110
Morton, Gregory J; Muta, Kenjiro; Kaiyala, Karl J et al. (2017) Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes 66:823-834
Kanow, Mark A; Giarmarco, Michelle M; Jankowski, Connor Sr et al. (2017) Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. Elife 6:
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2017) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol :
Hogan, Meghan F; Hull, Rebecca L (2017) The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60:952-959
Douglass, John D; Dorfman, Mauricio D; Thaler, Joshua P (2017) Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 60:226-236

Showing the most recent 10 out of 1119 publications