The overall objective of the Cell Function Analysis Core at the University of Washington Diabetes Research Center is to provide affiliates with analyses of glucose metabolism, mitochondrial function and intracellular signaling components critically important in diabetes, obesity and related disorders. To achieve this goal, the Core aims to: (1) Provide real time functional analysis in flow culture systems of tissues and cell types important in diabetes research. These have been expanded from just islets, to include retina, skeletal muscle, stem cells, macrophages, lymphocytes, adipocytes, endothelial cells, neuronal cells and hepatocytes;(2) Provide static assessment of cellular metabolism and function;(3) Isolate and culture primary tissue from rodents including islets and islet cells for subsequent morphological and functional characterization. Further, to procure human and monkey islets for the same purposes;and (4) Offer training and consultation to affiliates, their trainees and staff as well as develop new analytical tools requested by affiliates to support their studies of the metabolic regulation of cell function. The expansion of services provided during the current funding cycle has allowed the Core to better serve the needs of the Center's research base. As diabetes perturbs cellular metabolism and signaling in a variety of;cell types, the services of the Cell Function Analysis Core are, and will continue to be, of great value to Diabetes Research Center affiliate investigators who wish to study these aspects in order to gain a better understanding of physiology and disease pathophysiology.

Public Health Relevance

The Cell Function Analysis Core provides measurements of cell metabolism, function and signaling in a number of different cell types in order to better understand their role in the pathogenesis of diabetes, obesity and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-38
Application #
8635331
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$166,796
Indirect Cost
$70,936
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kursan, Shams; McMillen, Timothy S; Beesetty, Pavani et al. (2017) The neuronal K+Cl- co-transporter 2 (Slc12a5) modulates insulin secretion. Sci Rep 7:1732
Lee, Crystal Man Ying; Woodward, Mark; Pandeya, Nirmala et al. (2017) Comparison of relationships between four common anthropometric measures and incident diabetes. Diabetes Res Clin Pract 132:36-44
Han, Seung Jin; Boyko, Edward J; Fujimoto, Wilfred Y et al. (2017) Low Plasma Adiponectin Concentrations Predict Increases in Visceral Adiposity and Insulin Resistance. J Clin Endocrinol Metab 102:4626-4633
Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela et al. (2017) Adipocyte-Specific Deficiency of NADPH Oxidase 4 Delays the Onset of Insulin Resistance and Attenuates Adipose Tissue Inflammation in Obesity. Arterioscler Thromb Vasc Biol 37:466-475
Kanter, Jenny E (2017) Monocyte Recruitment Versus Macrophage Proliferation in Atherosclerosis. Circ Res 121:1109-1110
Morton, Gregory J; Muta, Kenjiro; Kaiyala, Karl J et al. (2017) Evidence That the Sympathetic Nervous System Elicits Rapid, Coordinated, and Reciprocal Adjustments of Insulin Secretion and Insulin Sensitivity During Cold Exposure. Diabetes 66:823-834
Kanow, Mark A; Giarmarco, Michelle M; Jankowski, Connor Sr et al. (2017) Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. Elife 6:
Anderson, Lindsey J; Tamayose, Jamie M; Garcia, Jose M (2017) Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Mol Cell Endocrinol :
Hogan, Meghan F; Hull, Rebecca L (2017) The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60:952-959
Douglass, John D; Dorfman, Mauricio D; Thaler, Joshua P (2017) Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 60:226-236

Showing the most recent 10 out of 1119 publications