The overall objective of the Cell Function Analysis Core at the University of Washington Diabetes Research Center is to provide affiliates with analyses of glucose metabolism, mitochondrial function and intracellular signaling to support research of diabetes, obesity and related disorders. To achieve this goal, the Core aims to: (1) Provide real time functional analysis using in vitro flow culture systems of tissues/cells; (2) Provide in vivo assessments of metabolic phenotypes in rodent models important in diabetes research; (3) Provide static assessment of cellular metabolism and function; (4) Harvest, isolate and culture primary tissue from rodents, including islets and islet cells, liver, retina and brain, for subsequent morphological and functional characterization, as well as to procure human islets for the same purposes; (5) Offer training and consultation to affiliates, their trainees and staff; and (6) Develop new analytical tools requested by affiliates to support their studies of the metabolic regulation of cell function as it relates to research in diabetes, obesity and related disorders. Since inception of the Core in 2002, in vitro analysis has been the major focus. Cell and tissue types that have been analyzed include islets, retina, skeletal muscle, stem cells, macrophages, lymphocytes, adipocytes, endothelial cells, neuronal cells and liver/hepatocytes. Recently, in vivo services have been added to combine both the detailed and mechanistic analyses provided in cell and tissue studies with the ability to test the roles of identified processes in whole body settings. Whole animal studies currently offered include glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, islet transplantation and collection of lymph. Expansion of new in vitro, ex vivo, and in vivo services has allowed the Core to better serve the needs of the Center's research base. As diabetes affects metabolism and signaling in many cell types, the services of the Cell Function Analysis Core continue to be of great value to many Center affiliate investigators. The Core plans to continue to provide users with systematic and integrated approaches to the analysis of cell types that are critically involved in diabetes and its complications, obesity and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK017047-42
Application #
9440156
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2018-02-10
Budget End
2018-11-30
Support Year
42
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Kuzma, Jessica N; Hagman, Derek K; Cromer, Gail et al. (2018) Intra-individual variation in markers of intestinal permeability and adipose tissue inflammation in healthy normal weight to obese adults. Cancer Epidemiol Biomarkers Prev :
Ettinger, Ruth A; Liberman, Joseph A; Gunasekera, Devi et al. (2018) FVIII proteins with a modified immunodominant T-cell epitope exhibit reduced immunogenicity and normal FVIII activity. Blood Adv 2:309-322
RISE Consortium (2018) Metabolic Contrasts Between Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes: II. Observations Using the Oral Glucose Tolerance Test. Diabetes Care 41:1707-1716
Norris, Jill M; Lee, Hye-Seung; Frederiksen, Brittni et al. (2018) Plasma 25-Hydroxyvitamin D Concentration and Risk of Islet Autoimmunity. Diabetes 67:146-154
Faber, Chelsea L; Matsen, Miles E; Velasco, Kevin R et al. (2018) Distinct Neuronal Projections From the Hypothalamic Ventromedial Nucleus Mediate Glycemic and Behavioral Effects. Diabetes 67:2518-2529
Ismail, Heba M; Xu, Ping; Libman, Ingrid M et al. (2018) The shape of the glucose concentration curve during an oral glucose tolerance test predicts risk for type 1 diabetes. Diabetologia 61:84-92
Pourmousa, Mohsen; Song, Hyun D; He, Yi et al. (2018) Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins. Proc Natl Acad Sci U S A 115:5163-5168
Salunkhe, Vishal A; Veluthakal, Rajakrishnan; Kahn, Steven E et al. (2018) Novel approaches to restore beta cell function in prediabetes and type 2 diabetes. Diabetologia 61:1895-1901
Durham, Andrew L; Speer, Mei Y; Scatena, Marta et al. (2018) Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 114:590-600
Ginos, Bigina N R; Navarro, Sandi L; Schwarz, Yvonne et al. (2018) Circulating bile acids in healthy adults respond differently to a dietary pattern characterized by whole grains, legumes and fruits and vegetables compared to a diet high in refined grains and added sugars: A randomized, controlled, crossover feeding stud Metabolism 83:197-204

Showing the most recent 10 out of 1296 publications