The overall objective of the Cell Function Analysis Core at the University of Washington Diabetes Research Center is to provide affiliates with analyses of glucose metabolism, mitochondrial function and intracellular signaling to support research of diabetes, obesity and related disorders. To achieve this goal, the Core aims to: (1) Provide real time functional analysis using in vitro flow culture systems of tissues/cells; (2) Provide in vivo assessments of metabolic phenotypes in rodent models important in diabetes research; (3) Provide static assessment of cellular metabolism and function; (4) Harvest, isolate and culture primary tissue from rodents, including islets and islet cells, liver, retina and brain, for subsequent morphological and functional characterization, as well as to procure human islets for the same purposes; (5) Offer training and consultation to affiliates, their trainees and staff; and (6) Develop new analytical tools requested by affiliates to support their studies of the metabolic regulation of cell function as it relates to research in diabetes, obesity and related disorders. Since inception of the Core in 2002, in vitro analysis has been the major focus. Cell and tissue types that have been analyzed include islets, retina, skeletal muscle, stem cells, macrophages, lymphocytes, adipocytes, endothelial cells, neuronal cells and liver/hepatocytes. Recently, in vivo services have been added to combine both the detailed and mechanistic analyses provided in cell and tissue studies with the ability to test the roles of identified processes in whole body settings. Whole animal studies currently offered include glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, islet transplantation and collection of lymph. Expansion of new in vitro, ex vivo, and in vivo services has allowed the Core to better serve the needs of the Center's research base. As diabetes affects metabolism and signaling in many cell types, the services of the Cell Function Analysis Core continue to be of great value to many Center affiliate investigators. The Core plans to continue to provide users with systematic and integrated approaches to the analysis of cell types that are critically involved in diabetes and its complications, obesity and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-44
Application #
9869000
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
44
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Banks, William A; Kovac, Andrej; Morofuji, Yoichi (2018) Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J Cereb Blood Flow Metab 38:1104-1118
de Groot, Mary; Marrero, David; Mele, Lisa et al. (2018) Depressive Symptoms, Antidepressant Medication Use, and Inflammatory Markers in the Diabetes Prevention Program. Psychosom Med 80:167-173
Roshandel, Delnaz; Gubitosi-Klug, Rose; Bull, Shelley B et al. (2018) Meta-genome-wide association studies identify a locus on chromosome 1 and multiple variants in the MHC region for serum C-peptide in type 1 diabetes. Diabetologia 61:1098-1111
Hannon, Tamara S; Kahn, Steven E; Utzschneider, Kristina M et al. (2018) Review of methods for measuring ?-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium. Diabetes Obes Metab 20:14-24
Brinkley, Tina E; Anderson, Andrea; Soliman, Elsayed Z et al. (2018) Long-Term Effects of an Intensive Lifestyle Intervention on Electrocardiographic Criteria for Left Ventricular Hypertrophy: The Look AHEAD Trial. Am J Hypertens 31:541-548
Kanter, Jenny E; Kramer, Farah; Barnhart, Shelley et al. (2018) A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes 67:946-959
Redondo, Maria J; Geyer, Susan; Steck, Andrea K et al. (2018) TCF7L2 Genetic Variants Contribute to Phenotypic Heterogeneity of Type 1 Diabetes. Diabetes Care 41:311-317
Guillory, Bobby; Jawanmardi, Nicole; Iakova, Polina et al. (2018) Ghrelin deletion protects against age-associated hepatic steatosis by downregulating the C/EBP?-p300/DGAT1 pathway. Aging Cell 17:
RISE Consortium (2018) Impact of Insulin and Metformin Versus Metformin Alone on ?-Cell Function in Youth With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes. Diabetes Care 41:1717-1725
Osoti, Alfred; Temu, Tecla M; Kirui, Nicholas et al. (2018) Metabolic Syndrome Among Antiretroviral Therapy-Naive Versus Experienced HIV-Infected Patients Without Preexisting Cardiometabolic Disorders in Western Kenya. AIDS Patient Care STDS 32:215-222

Showing the most recent 10 out of 1296 publications