The incidence of diabetes is increasing rapidly as a result of the obesity epidemic. The Mouse Phenotyping, Physiology and Metabolism Core supports the overall mission of the Penn DRC to prevent, treat, and cure diabetes mellitus. Our understanding of the pathogenesis of diabetes, obesity and other metabolic disorders has benefited from the use of gene targeting methodology in mice to elucidate molecular mechanisms. However, such efforts are often hampered by a lack of facilities or expertise for metabolic phenotyping. The Mouse Phenotyping, Physiology and Metabolism Core provides investigators of the Penn Diabetes Research Center (DRC) with state-of-the-art, timely and cost-effective diagnostic studies in mice. The core offers consultation and experimental design, monitoring of feeding, drinking, energy expenditure, locomotor activity and sleep epochs using a Comprehensive Laboratory Animal Monitoring System (CLAMS), measurement of body composition using dual emission x-ray absorptiometry (DEXA) or nuclear magnetic resonance spectroscopy, and assessment of glucose homeostasis with glucose and insulin tolerance tests, and insulin clamp and radioactive tracer kinetics. Studies in the core are performed by two research specialists under the direction of Rexford Ahima. The core maintains a database of metabolic and hormonal parameters in mouse models of diabetes and obesity, and coordinates its services with other core laboratories, i.e. Islet Biology (Franz Matschinsky;Doris Stoffers), Radioimmunoassay and Biomarkers (Muredach Reilly), Transgenic and Chimeric (Nancy Cooke;Stephen Liebhaber), and Functional Genomics Core (Klaus Kaestner). These efforts facilitate in vivo metabolic phenotyping of mice, and the translation of ideas from the bench to mice, and ultimately to humans.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Park, Hyeong-Kyu; Ahima, Rexford S (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64:24-34
Mulvey, Claire K; McNeill, Ann M; Girman, Cynthia J et al. (2014) Differential associations of oral glucose tolerance test-derived measures of insulin sensitivity and pancreatic *-cell function with coronary artery calcification and microalbuminuria in type 2 diabetes. Diabetes Care 37:124-33
Roe, Andrea; Hillman, Jennifer; Butts, Samantha et al. (2014) Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS. J Clin Endocrinol Metab 99:E841-7
Soleimanpour, Scott A; Gupta, Aditi; Bakay, Marina et al. (2014) The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 157:1577-90
Ferguson, Jane F; Mulvey, Claire K; Patel, Parth N et al. (2014) Omega-3 PUFA supplementation and the response to evoked endotoxemia in healthy volunteers. Mol Nutr Food Res 58:601-13
Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A (2014) Tissue specific CTCF occupancy and boundary function at the human growth hormone locus. Nucleic Acids Res 42:4906-21
Prenner, Stuart B; Mulvey, Claire K; Ferguson, Jane F et al. (2014) Very low density lipoprotein cholesterol associates with coronary artery calcification in type 2 diabetes beyond circulating levels of triglycerides. Atherosclerosis 236:244-50
Lee, Dolim; Le Lay, John; Kaestner, Klaus H (2014) The transcription factor CREB has no non-redundant functions in hepatic glucose metabolism in mice. Diabetologia 57:1242-8
Li, Ming; Li, Changhong; Allen, Aron et al. (2014) Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res 39:433-45
Naidoo, Nirinjini; Davis, James G; Zhu, Jingxu et al. (2014) Aging and sleep deprivation induce the unfolded protein response in the pancreas: implications for metabolism. Aging Cell 13:131-41

Showing the most recent 10 out of 487 publications