The Viral Vector Core is a critical resource for Penn Diabetes Research Center (DRC) members interested in the use of viral vectors for gene therapy and basic research applications. The Vector core provides adenoviral vectors, adeno-associated viral vectors (AAV) and lentiviral vectors and offers a full range of services including cloning, DNA amplification and characterization, vector design and consultation. The Core is located within one of the premier gene therapy research laboratories in the country and specializes in the production and distribution of novel AAV serotype vectors and pseudotyped lentiviral vectors. The objectives of the DRC Vector Core are as follows: Using state-of-the-art facilities and dedicated professional staff, the Core will: (1) provide DRC Center members with access to advanced vector technologies for use in diabetes and related endocrine disorder applications;(2) work with DRC executive committee members to develop vectors or recombinant viruses specifically for use by DRC members;(3) transition newly created vectors with superior transduction profiles developed in Penn laboratories to the Core for validation and distribution to DRC members;(4) provide consultation to DRC members for vector construction and experimental design and (5) develop a web-based interface to accompany the recently developed Vector Core database to enable DRC members to request services, monitor the status of vector production and access historical data on all vectors produced for their laboratory by the Vector Core. The overall goal of the DRC Vector Core, like that of the larger Penn DRC, is to serve investigators at Penn and surrounding institutions, and aid in the advancement of diabetes-related research toward the goal of prevention, treatment, and cures for this devastating disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK019525-37
Application #
8469483
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
37
Fiscal Year
2013
Total Cost
$81,229
Indirect Cost
$29,865
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Brown, Justin C; Troxel, Andrea B; Ky, Bonnie et al. (2016) A randomized phase II dose-response exercise trial among colon cancer survivors: Purpose, study design, methods, and recruitment results. Contemp Clin Trials 47:366-75
Zhang, Yuxiang; Fang, Bin; Damle, Manashree et al. (2016) HNF6 and Rev-erbα integrate hepatic lipid metabolism by overlapping and distinct transcriptional mechanisms. Genes Dev 30:1636-44
Titchenell, Paul M; Quinn, William J; Lu, Mingjian et al. (2016) Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metab 23:1154-66
Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan et al. (2016) Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 5:233-44
Henley, Kathryn D; Stanescu, Diana E; Kropp, Peter A et al. (2016) Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and β-Cell Function. Cell Rep 15:2637-50
Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A (2016) Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster. Nucleic Acids Res 44:4651-64
Wang, Yue J; Schug, Jonathan; Won, Kyoung-Jae et al. (2016) Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes 65:3028-38
Tomar, Dhanendra; Dong, Zhiwei; Shanmughapriya, Santhanam et al. (2016) MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. Cell Rep 15:1673-85
Wang, Yi; Frank, David B; Morley, Michael P et al. (2016) HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation. Dev Cell 36:303-15
Shearin, Abigail L; Monks, Bobby R; Seale, Patrick et al. (2016) Lack of AKT in adipocytes causes severe lipodystrophy. Mol Metab 5:472-9

Showing the most recent 10 out of 624 publications