The primary goals and function of the MDRC Animal Phenotyping Core are to provide expert consultation, state-of-the art equipment and technical services that are critical for the detailed metabolic phenotyping of rodent models of diabetes and obesity. The goals of the Animal Phenotyping Core are to: 1. Provide expert consultation and training to MDRC investigators regarding phenotyping strategies and experimental design to characterize rodent models of diabetes and related metabolic diseases. 2. Provide MDRC investigators with the capability for sophisticated, standardized metabolic phenotyping of rodent models relevant to diabetes, obesity and associated metabolic diseases. 3. Provide expert aid in the analysis and interpretation of data arising from services offered in the APC. 4. Develop new techniques and acquire new technologies for rodent, whole animal metabolic phenotyping in response to the needs of MDRC investigators. The Animal Phenotyping Core provides a comprehensive, convenient and cost-effective menu of platforms that includes: a) Glucose homeostasis and metabolic clamp studies in rats and mice, b) Whole animal metabolic assessment. The CLAMS apparatus and other systems are used to examine metabolic rate, respiratory quotient, food consumption, and locomotor activity in rodent models, c) Body composition is measured by NMR. d) Radiotelemetric monitoring. Systems are in place for remote, chronic monitoring of cardiovascular parameters and core body temperature in rats and diurnal running wheel behavior in mice, e) Ingestive behavior. Meal microstructure and reinforcing properties of dietary constituents are measured in either home-cage or operant-conditloning paradigms, f) Automated blood/body fluids sampling and infusion in freely behaving, unstressed rodents. Altogether, the Animal Phenotyping Core provides consultation and advice on experimental design, reliable data from a range of validated assays and essential data analysis relevant to the needs of multiple investigators in the MDRC.

Public Health Relevance

Research conducted by the Animal Phenotyping Core is relevant to public health because it will increase our understanding of the events that underlie the development of diabetes and Its complications, and hence will facilitate the development of improved diagnostic, prevention and treatment strategies. The Core also provides preclinical analyses in rodent models to determine the efficacy of potential new therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK020572-40
Application #
9189718
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2018-02-26
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
40
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Arunagiri, Anoop; Haataja, Leena; Cunningham, Corey N et al. (2018) Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci 1418:5-19
Burgess, Christian R; Livneh, Yoav; Ramesh, Rohan N et al. (2018) Gating of visual processing by physiological need. Curr Opin Neurobiol 49:16-23
Jaiswal, Mamta; Divers, Jasmin; Pop-Busui, Rodica et al. (2018) Response to Comment on Jaiswal et al. Prevalence of and Risk Factors for Diabetic Peripheral Neuropathy in Youth With Type 1 and Type 2 Diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care 2017;40:1226-1232. Diabetes Care 41:e37
Verma, Rakesh; Venkatareddy, Madhusudan; Kalinowski, Anne et al. (2018) Nephrin is necessary for podocyte recovery following injury in an adult mature glomerulus. PLoS One 13:e0198013
Bagchi, Devika P; Forss, Isabel; Mandrup, Susanne et al. (2018) SnapShot: Niche Determines Adipocyte Character II. Cell Metab 27:266-266.e1
Zhang, Song-Yang; Dong, Yong-Qiang; Wang, Pengcheng et al. (2018) Adipocyte-derived Lysophosphatidylcholine Activates Adipocyte and Adipose Tissue Macrophage Nod-Like Receptor Protein 3 Inflammasomes Mediating Homocysteine-Induced Insulin Resistance. EBioMedicine 31:202-216
Ge, Chunxi; Zhao, Guisheng; Li, BinBin et al. (2018) Genetic inhibition of PPAR? S112 phosphorylation reduces bone formation and stimulates marrow adipogenesis. Bone 107:1-9
Peterson, Laura S; Gállego Suárez, Cecilia; Segaloff, Hannah E et al. (2018) Outcomes and Resource Use Among Overweight and Obese Children With Sepsis in the Pediatric Intensive Care Unit. J Intensive Care Med :885066618760541
Hodish, I (2018) Insulin therapy for type 2 diabetes - are we there yet? The d-Nav® story. Clin Diabetes Endocrinol 4:8
Huang, Wei; Wang, Lu; Li, Jianping et al. (2018) Short-Term Blood Pressure Responses to Ambient Fine Particulate Matter Exposures at the Extremes of Global Air Pollution Concentrations. Am J Hypertens 31:590-599

Showing the most recent 10 out of 1823 publications