The Immunology of Type 1 Diabetes Core provides logistic support to investigators examining autoimmune or type 1 diabetes or other endocrine autoimmunities. The Core is centered in the Department of Pathology and Immunology. The Core provides: i) assistance in the maintenance of various inbred mouse lines, including conventional non-obese diabetic (NOD) mice and NOD lines in which a variety of immune-relevant molecules has been deleted;ii) training in the maintenance and testing of diabetogenic strains;iii) expertise in, and training for, the isolation and examination of islets of Langerhans;iv) services for the generation of new diabetogenic mouse strains using Balb/c and NOD embryonic stem cells;and v) provision of isolated cells, cell lines, and monoclonal antibodies relevant for immunological research. During the past funding cycle, services were provided to 31 investigators, which represents a doubling of service provided compared to the prior funding cycle. This reflects, in part, increased utilization of the most frequently requested service, maintenance and provision of inbred strains. The increase also reflects the new services for provision of cell lines, isolated immune cells, antibodies and peptides. The Core provides service to and has helped to cultivate a diverse group of investigators at Washington University with a commitment to studying the pathogenesis and treatment of type 1 diabetes. Services from this Core were instrumental in facilitating high impact studies of the immunobiology of type 1 diabetes.

Public Health Relevance

The Core provides services to facilitate the investigations of immunologists and diabetologists working to understand the pathogenesis of type 1 diabetes. The Core services are particulariy useful to faculty starting their own laboratories, or to faculty wishing to carry out pilot studies using autoimmune propensity mice. Importantly, this Core provides assistance with highly specialized immune models of type 1 diabetes that can be difficult to generate and propagate.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK020579-36
Application #
8441757
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
36
Fiscal Year
2013
Total Cost
$100,335
Indirect Cost
$34,325
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Gaut, Joseph P; Crimmins, Dan L; Ohlendorf, Matt F et al. (2014) Development of an immunoassay for the kidney-specific protein myo-inositol oxygenase, a potential biomarker of acute kidney injury. Clin Chem 60:747-57
Hsu, Fong-Fu; Kuhlmann, F Matthew; Turk, John et al. (2014) Multiple-stage linear ion-trap with high resolution mass spectrometry towards complete structural characterization of phosphatidylethanolamines containing cyclopropane fatty acyl chain in Leishmania infantum. J Mass Spectrom 49:201-9
Vigueira, Patrick A; McCommis, Kyle S; Schweitzer, George G et al. (2014) Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion. Cell Rep 7:2042-53
Calderon, Boris; Carrero, Javier A; Unanue, Emil R (2014) The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol 26:32-40
Asombang, Akwi W; Rahman, Rubayat; Ibdah, Jamal A (2014) Gastric cancer in Africa: current management and outcomes. World J Gastroenterol 20:3875-9
Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena et al. (2014) Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes 63:976-81
Schugar, Rebecca C; Moll, Ashley R; André d'Avignon, D et al. (2014) Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab 3:754-69
Yoshino, Jun; Almeda-Valdes, Paloma; Patterson, Bruce W et al. (2014) Diurnal variation in insulin sensitivity of glucose metabolism is associated with diurnal variations in whole-body and cellular fatty acid metabolism in metabolically normal women. J Clin Endocrinol Metab 99:E1666-70
Napoli, Nicola; Shah, Krupa; Waters, Debra L et al. (2014) Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr 100:189-98
Aguirre, Lina; Napoli, Nicola; Waters, Debra et al. (2014) Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab 99:3290-7

Showing the most recent 10 out of 70 publications