The Immunology of Type 1 Diabetes Core provides logistic support to investigators examining autoimmune or type 1 diabetes or other endocrine autoimmunities. The Core is centered in the Department of Pathology and Immunology. The Core provides: i) assistance in the maintenance of various inbred mouse lines, including conventional non-obese diabetic (NOD) mice and NOD lines in which a variety of immune-relevant molecules has been deleted;ii) training in the maintenance and testing of diabetogenic strains;iii) expertise in, and training for, the isolation and examination of islets of Langerhans;iv) services for the generation of new diabetogenic mouse strains using Balb/c and NOD embryonic stem cells;and v) provision of isolated cells, cell lines, and monoclonal antibodies relevant for immunological research. During the past funding cycle, services were provided to 31 investigators, which represents a doubling of service provided compared to the prior funding cycle. This reflects, in part, increased utilization of the most frequently requested service, maintenance and provision of inbred strains. The increase also reflects the new services for provision of cell lines, isolated immune cells, antibodies and peptides. The Core provides service to and has helped to cultivate a diverse group of investigators at Washington University with a commitment to studying the pathogenesis and treatment of type 1 diabetes. Services from this Core were instrumental in facilitating high impact studies of the immunobiology of type 1 diabetes.

Public Health Relevance

The Core provides services to facilitate the investigations of immunologists and diabetologists working to understand the pathogenesis of type 1 diabetes. The Core services are particulariy useful to faculty starting their own laboratories, or to faculty wishing to carry out pilot studies using autoimmune propensity mice. Importantly, this Core provides assistance with highly specialized immune models of type 1 diabetes that can be difficult to generate and propagate.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Burman, Blaire E; Bacchetti, Peter; Khalili, Mandana (2016) Moderate Alcohol Use and Insulin Action in Chronic Hepatitis C Infection. Dig Dis Sci 61:2417-25
Chondronikola, M; Harris, L L S; Klein, S (2016) Bariatric surgery and type 2 diabetes: are there weight loss-independent therapeutic effects of upper gastrointestinal bypass? J Intern Med 280:476-486
Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L et al. (2016) Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod 31:1315-26
Siller, Alejandro F; Lugar, Heather; Rutlin, Jerrel et al. (2016) Severity of clinical presentation in youth with type 1 diabetes is associated with differences in brain structure. Pediatr Diabetes :
Lin, Jonathan B; Kubota, Shunsuke; Ban, Norimitsu et al. (2016) NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice. Cell Rep 17:69-85
Jarad, George; Knutsen, Russell H; Mecham, Robert P et al. (2016) Albumin contributes to kidney disease progression in Alport syndrome. Am J Physiol Renal Physiol 311:F120-30
Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina et al. (2016) A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech 9:769-78
Merriwether, Ericka N; Hastings, Mary K; Bohnert, Kathryn L et al. (2016) Impact of foot progression angle modification on plantar loading in individuals with diabetes mellitus and peripheral neuropathy. Edorium J Disabil Rehabil 2:15-23
Chowdhury, Sara; Wang, Songyan; Dunai, Judit et al. (2016) Hormonal Responses to Cholinergic Input Are Different in Humans with and without Type 2 Diabetes Mellitus. PLoS One 11:e0156852
Zou, Wei; Rohatgi, Nidhi; Chen, Timothy Hung-Po et al. (2016) PPAR-γ regulates pharmacological but not physiological or pathological osteoclast formation. Nat Med 22:1203-1205

Showing the most recent 10 out of 487 publications