The Mass Spectrometry (MS) Core of the Washington University Diabetes Research Center (DRC) increases DRC efficiency and cost effectiveness by performing MS analyses for affiliated investigators. The MS Core provides state-of-the-art MS services to determine structures and to quantitate amounts of diabetes-related biomolecules. The MS Core provides centralized, standardized analytical procedures that permit study of molecular mechanisms of the pathogenesis of diabetes mellitus, its risk factors, and its complications, including the metabolic syndrome, obesity, atherosclerosis, and increased susceptibility to infections. Speciflc objectives of the DRC MS Core are: 1. To provide training to students and fellows in principles of MS and use of MS systems, e.g., gas chromatography (GC)/MS, isotope ratio (IR)/MS, electrospray ionization (ESI)/tandem MS, and matrix assisted laser desorption ionization (MALDI)/time of fiight/(TOF)/MS in analyses of diabetes-related biomolecules. To develop new MS methods for structural identification and quantitation of molecules involved in diabetes, its risk factors and complications, and related physiologic and pathophysiologic events. To perform service MS analyses, e.g. quantitation of target analytes and obtaining spectra for structural i identification, for DRTC Investigators. To assist DRC-affiliated investigators in developing MS assays. To provide consultation in interpreting MS data. To develop and disseminate new approaches in biomedical MS that are applicable to diabetes research. To provide and maintain functional MS systems for use in diabetes research. To perform collaborative diabetes research studies involving MS Core staff requiring specialized expertise, e.g.. Stable Isotope Labeling in Cell Culture (SILAC), Stable Isotpe Labeling Tandem Mass Spectrometry (SILT), characterization of post-translational modifications or protein-protein interactions, or studies of complex lipids that require de novo structure determination. 9. To reduce diabetes research costs by providing centralized MS services at a fraction of the cost of commercial MS services or of maintaining instruments in the laboratories of individual investigators.

Public Health Relevance

The DRC MS Core employs the power of mass spectrometry to study biochemical and metabolic pathways that are altered in diabetes and in its risk factors and complications, including obesity, cardiovascular disease, and increased suscpetibility to infections, which cause morbidity and accelerate mortality. Insight into their mechanisms may lead to more effective means to prevent or treat them.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Andrich, Kathrin; Hegenbart, Ute; Kimmich, Christoph et al. (2017) Aggregation of Full-length Immunoglobulin Light Chains from Systemic Light Chain Amyloidosis (AL) Patients Is Remodeled by Epigallocatechin-3-gallate. J Biol Chem 292:2328-2344
Muniappan, Latha; Javidan, Aida; Jiang, Weihua et al. (2017) Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice. Sci Rep 7:14398
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Kim, Yeawon; Park, Sun-Ji; Chen, Ying Maggie (2017) Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new player in endoplasmic reticulum diseases: structure, biology, and therapeutic roles. Transl Res 188:1-9
Mikhalkova, Deana; Holman, Sujata R; Jiang, Hui et al. (2017) Bariatric Surgery-Induced Cardiac and Lipidomic Changes in Obesity-Related Heart Failure with Preserved Ejection Fraction. Obesity (Silver Spring) :
Villareal, Dennis T; Aguirre, Lina; Gurney, A Burke et al. (2017) Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N Engl J Med 376:1943-1955
Lin, Meei-Hua; Miner, Jeffrey H; Turk, John et al. (2017) Linear ion-trap MSn with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J Lipid Res 58:772-782
Park, Thomas; Eyler, Amy A; Tabak, Rachel G et al. (2017) Opportunities for Promoting Physical Activity in Rural Communities by Understanding the Interests and Values of Community Members. J Environ Public Health 2017:8608432
Yamaguchi, Shintaro; Yoshino, Jun (2017) Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. Bioessays 39:
Kim, Yeawon; Park, Sun-Ji; Manson, Scott R et al. (2017) Elevated urinary CRELD2 is associated with endoplasmic reticulum stress-mediated kidney disease. JCI Insight 2:

Showing the most recent 10 out of 565 publications