Previously known as the Mouse Phenotyping Core of the Washington University DRTC, the Diabetes Models Phenotyping Core of the DRC provides specialzed technical services and expertise to DRC members in order to enhance their productivity, increase their efficiency, and promote interactive multidisciplinary research. The Core pursues three overarching objectives: 1) To provide phenotyping services to DRC members to facilitate NIH funded diabetes /metabolism-related research and enhance the cost-effectiveness of that research; 2) To train DRC investigators in the maintenance and manipulation of mouse colonies relevant to diabetes and metabolic research; 3) To develop new research capabilities to enhance the ability of DRC members to perform diabetes and metabolic research. The Core has been extremely successful at achieving these objectives. During the previous period of support by NIH, 33 different diabetes-related laboratories utilized Core services. In terms of the three services in most demand by our members, the Core performed more than 32,000 biochemical analyses of mouse serum, more than 2,700 body compositions in mice, and more than 3,200 biochemical analyses of tissues. Training is critical to the mission of the Core, and more than 100 clock hours of consultation were provided to members of 15 different DRC laboratories during the previous period of support. Core services evolve based on DRC needs, and we are in the process of establishing in vivo imaging of living mice as a new core service. Since 2007, this Core has supported high impact research relevant to type 1 diabetes, type 2 diabetes, cardiovascular complications of diabetes, lipid mediators of the pathophysiology of diabetes syndromes, and microbiota impacting diabetes phenotypes. Several of these observations have provided the conceptual framework for translational studies in humans with the potential to treat diabetes and its complications.

Public Health Relevance

Diabetes is one of the most serious public health problems in America, both type 1 and type 2 diabetes are increasing in prevalence, and therapeutic options for diabetes and its complications are limited. This Core provides services with the potential to identify novel strategies with the potential to lead to new diabetes treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
4P30DK020579-39
Application #
8988558
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
2015-12-01
Budget End
2016-11-30
Support Year
39
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Hampton, Kaia K; Anderson, Katie; Frazier, Hilaree et al. (2018) Insulin Receptor Plasma Membrane Levels Increased by the Progesterone Receptor Membrane Component 1. Mol Pharmacol 94:665-673
Ferguson, Daniel; Blenden, Mitchell; Hutson, Irina et al. (2018) Mouse Embryonic Fibroblasts Protect ob/ob Mice From Obesity and Metabolic Complications. Endocrinology 159:3275-3286
Samovski, Dmitri; Dhule, Pallavi; Pietka, Terri et al. (2018) Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Diabetes 67:1272-1284
Warren, Junco S; Tracy, Christopher M; Miller, Mickey R et al. (2018) Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. Proc Natl Acad Sci U S A 115:E7871-E7880
Funk, Steven D; Bayer, Raymond H; Malone, Andrew F et al. (2018) Pathogenicity of a Human Laminin ?2 Mutation Revealed in Models of Alport Syndrome. J Am Soc Nephrol 29:949-960
Adams, Melissa T; Gilbert, Jennifer M; Hinojosa Paiz, Jesus et al. (2018) Endocrine cell type sorting and mature architecture in the islets of Langerhans require expression of Roundabout receptors in ? cells. Sci Rep 8:10876
Jung, Sang-Hee; Jung, Chan-Hee; Reaven, Gerald M et al. (2018) Adapting to insulin resistance in obesity: role of insulin secretion and clearance. Diabetologia 61:681-687
Bumpus, Emily; Hershey, Tamara; Doty, Tasha et al. (2018) Understanding activity participation among individuals with Wolfram Syndrome. Br J Occup Ther 81:348-357
Park, Sun-Ji; Kim, Yeawon; Chen, Ying Maggie (2018) Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol :
De Silva, Gayan S; Saffaf, Khalid; Sanchez, Luis A et al. (2018) Amputation stump perfusion is predictive of post-operative necrotic eschar formation. Am J Surg 216:540-546

Showing the most recent 10 out of 654 publications